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The complexity of cell types in multicellular organisms is 
driven not by a large increase in gene number but instead by 
the combinatorial expression of a surprisingly small number 
of components. Specific combinations of genes exhibit emer-
gent properties when expressed together, enabling the gener-
ation of many diverse cell types and behaviors. Searching for 
such emergent properties is enabled by the quantitative study 
of genetic interactions (GIs), which compare the phenotypic 
consequences of perturbing a pair of genes alone or in com-
bination, typically by measuring growth (although other phe-
notypic readouts such as reporter gene expression and 
transcriptional responses have been explored) (1, 2). GIs can 
reveal synthetic lethal vulnerabilities in tumors, identify sup-
pressors of inherited and acquired disorders, and guide the 
design of cocktails of genes to drive differentiation between 
cell types (3, 4). Pioneering efforts in yeast to construct sys-
tematic GI maps between all gene pairs have enabled system-
atic determination of gene function, identification of protein 
complexes and definition of gene regulatory networks in a 
principled and unbiased manner (1, 2). 

Recent studies have extended such approaches to mam-
malian and other metazoan systems, but these efforts face 
two major challenges: scale and information content (1, 2). 
For example, mapping pairwise interactions among the 
~10,000 transcribed genes in a human cell would require 
measuring ~50 million double mutants. This scale has neces-
sitated the use of highly parallelizable readouts of phenotype, 

such as growth rate, that obscure the mechanistic or molecu-
lar basis for any particular interaction. Put simply, there are 
many ways for cells to appear equally “unfit”: the reprogram-
ming of a pluripotent cell to a terminally differentiated neu-
ron may affect growth as much as induction of apoptosis or 
cell cycle arrest. Furthermore, many metazoan cell types are 
quiescent or post-mitotic, and as such are not amenable to 
growth-based screens. Finally, bulk measures of their proper-
ties may obscure important cell-to-cell variability. 

Emerging high-throughput approaches for monitoring 
rich phenotypes of individual cells (e.g., imaging or droplet 
single-cell transcriptomics) present a potential solution to 
these problems. For example, Perturb-seq pairs CRISPR-
based screens with single-cell RNA sequencing (5–8). Each 
individual cell is in effect an independent experiment con-
necting a genetic perturbation to its transcriptional conse-
quences, allowing hundreds of thousands of parallel 
measurements (9, 10). It has been suggested that the rich phe-
notypes enabled by Perturb-seq can be used to better inter-
pret the impact of genetic interactions (7). 

Here we exploit the scalability and rich transcriptome 
readout of Perturb-seq to implement a principled approach 
for systematically studying mammalian GIs. Each transcrip-
tional measurement, and effectively each genetic perturba-
tion (single or combinatorial), can be viewed as defining a 
point in high-dimensional space. By measuring many GIs, we 
therefore effectively map out a surface—a manifold in 
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mathematical terminology—that describes the transcrip-
tional states a cell can occupy upon perturbation (Fig. 1A). 
We argue that this GI manifold carries much more infor-
mation about interactions than a traditional GI map, and is 
intrinsically more interpretable in several ways, including the 
ability to resolve the distinct outcomes underlying GIs and to 
model the different ways genetic perturbations combine to 
yield new phenotypes. 
 
An overexpression strategy identifies strong genetic in-
teractions 
Most previous studies of GIs have focused on loss-of-function 
perturbations, but many important cellular processes like dif-
ferentiation are also associated with the expression of new 
genes (e.g., MYOD1 in muscle cells). Genes that exhibit phe-
notypes when expressed alone have a higher rate of genetic 
interactions with other genes (1, 2). To identify mechanisti-
cally diverse GIs arising from gene activation, we therefore 
selected 112 “hit” genes whose activation enhances or retards 
growth of K562 cells (Fig. 1A and table S1) (11), including cell 
cycle regulators, transcription factors, kinases, phosphatases, 
as well as genes of unknown function. 

To systematically measure gain-of-function (overexpres-
sion) GIs, we adapted a technology developed for construct-
ing fitness GI maps in human cells using CRISPRi (12) (Fig. 
1, A and B, and fig. S1). Each candidate interaction was 
probed by constructing a library of vectors containing pairs 
of sgRNAs (table S2). As we included two distinct sgRNAs tar-
geting each gene, a total of 28,680 unique sgRNA pairs were 
tested. K562 cells stably expressing the SunTag CRISPRa sys-
tem (11) were transduced with the CRISPRa GI library, and 
sgRNA pair abundance was compared at the start of the 
screen and after ten days of growth to measure fitness phe-
notypes. GI scores were assigned by measuring deviation be-
tween the observed fitness of overexpressing both genes from 
the expected fitness based on the average impact of each sin-
gle gene ((12); see materials and methods, fig. S2, and table 
S3). Independent replicate experiments showed high levels of 
concordance for sgRNA-level GI scores and GI profile corre-
lations, and independent sgRNAs targeting the same gene 
were much more similar than the background of all sgRNA 
GI correlations (median R=0.50 compared to 0.04; Fig. 1, C 
and D; fig. S3A; and table S4). The gene-level GI scores ob-
tained by averaging sgRNAs targeting the same gene were 
also well correlated between replicates (gene-level GI R=0.80, 
p<10−300; Fig. 1E, fig. S3A, and table S5) and followed a bell-
shaped distribution but with GIs ranging well beyond the ex-
pectation from negative control sgRNAs (Fig. 1F and fig. S3B). 

We then clustered genes according to the similarity of 
their GI profiles to produce a GI map (Fig. 1B; larger version 
with gene labels provided in fig. S4). Highly correlated genes 
were enriched for genes with the same DAVID term 

annotations (13), allowing for unbiased annotation of clusters 
(Fig. 1B; fig. S5, A and B; and table S6). In addition, the map 
contained fewer clusters than would be expected in a random 
map (fig. S5, C and D), consistent with the typical low-rank 
structure of GI maps (i.e., groups of genes interact similarly 
so that there are fewer overall degrees of freedom than total 
genes). Thus the structure of the CRISPRa GI map, like past 
efforts based on loss-of-function alleles, can assign function 
to individual genes by the similarity of GI profiles (1, 2). How-
ever, though the GI map robustly identified many strong GIs, 
the origins of specific interactions were difficult to deduce as 
each GI was characterized only by a single scalar value (i.e., 
deviation from expected growth rates). 
 
A Perturb-seq platform for measuring GIs 
We reasoned that Perturb-seq, which allows single-cell, 
pooled transcriptional profiling of CRISPR-mediated pertur-
bations (5–8), would enable us to better resolve the mecha-
nisms underlying GIs. We picked 132 gene pairs from the GI 
map, chosen both within and between blocks of genes with 
similar interaction profiles, and targeted each with CRISPRa 
sgRNA pairs (Fig. 1A, fig. S6A, table S2, and materials and 
methods). Given the low-rank structure of the fitness GI map, 
we reasoned that we could broadly sample the biological pro-
cesses represented without measuring all gene pairs, as many 
GIs that fell into the “blocks” in the GI map were likely ex-
plained by similar mechanisms (Methods). We also profiled 
all single gene perturbations to enable direct comparison of 
individual and combined perturbations (i.e., single gene A, 
single gene B, and pair AB). In total, we obtained transcrip-
tional readouts for 287 perturbations measured across 
~110,000 single cells (median 273 cells per condition; materi-
als and methods, fig. S1, and table S7) in one pooled experi-
ment. 

The Perturb-seq profiles also allowed us to directly assess 
the performance of our CRISPRa reagents (table S7). Levels 
of target gene activation spanned a broad range (Fig. 1G and 
fig. S6, B and C), with a general trend that poorly expressed 
targets were more highly induced. The A and B positions of 
the sgRNA cassette performed similarly (Fig. 1G and fig. S6, 
D and E), and expression of genes neighboring the target was 
generally unperturbed except when transcripts shared pro-
moter regions (materials and methods; fig. S7, A and B; and 
table S8). Finally, there was minimal correlation between fold 
activation and the number of differentially expressed genes, 
implying that even small increases in the mRNA abundance 
of some genes can strongly alter a cell’s state (R=0.07; Fig. 
1H). The degree of fitness defect was related to the number 
of differentially expressed genes (fig. S7C). 

Constructing a GI manifold reveals biological processes 
driving GIs 
While GI maps assign a scalar score to each GI, our Perturb-
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seq approach instead associates a transcriptional phenotype. 
We viewed this ensemble of measurements as defining a 
high-dimensional analog of a GI map, here termed a GI man-
ifold. In our manifold analogy, each possible cellular tran-
scriptional state defines a point on a high-dimensional 
surface. By applying a diverse set of perturbations and meas-
uring the resulting states (as we have), it becomes possible to 
infer the shape of this surface (Fig. 1A). Moreover, as each GI 
is characterized by a rich phenotype, we envisioned that this 
perspective would allow us to organize GIs by common fea-
tures and globally examine their mechanistic underpinnings. 

To visualize this GI manifold, we used UMAP (uniform 
manifold approximation and projection, (14)) to project the 
mean expression profiles for our 287 perturbations into a 
two-dimensional plane (Fig. 2, A and B; single-cell version in 
fig. S8). This algorithm approximates the shape of a high-di-
mensional surface in two dimensions by trying to conserve 
nearest neighbor relationships. Perturbations that induced 
similar transcriptional changes then naturally clustered close 
to each other; we defined stable clusters using the HDBSCAN 
algorithm ((15), Methods). Both fitness and GI scores were 
distributed throughout the GI manifold (Fig. 2, C and D), in 
accordance with the idea that scalar fitness measurements 
collapse the much larger landscape of transcriptional states 
(Fig. 1A). In contrast, by overlaying markers derived from the 
underlying transcriptional data, we could gain insight into 
mechanism by looking at common features of perturbations 
within each cluster. For example, one cluster of mean expres-
sion profiles (“G1 cell cycle arrest”) contained canonical reg-
ulators of the cell cycle. In this case, the underlying single-
cell data confirmed that these perturbations induced cell cy-
cle arrest in the expected cell cycle stages (Fig. 2, E and F), 
explaining the growth defect. 

Interestingly, we observed clusters of perturbations that 
caused cells to induce erythroid, granulocyte or megakaryo-
cyte markers, which is consistent with the known multiline-
age potential of the K562 model (Fig. 2B; Fig. 3, A and B; and 
fig. S9) (16, 17). These results suggested that cell differentia-
tion/priming and a concomitant decrease in proliferation ex-
plained some of the structure of the GI manifold. For 
example, many interactions surrounding CBL, its regulators 
UBASH3A/B, and several multi-substrate tyrosine phospha-
tases (e.g., PTPN9/12) induced erythroid markers, suggesting 
a common mechanism in regulation of receptor tyrosine ki-
nase signaling (18). By contrast, the granulocyte cluster 
mostly contained perturbations of canonical regulators such 
as C/EBP-α, -β, -ε (CEBPA/B/G) and PU.1 (SPI1). Finally, a 
cluster of perturbations induced expression of the canonical 
megakaryocyte marker CD41, but these cells did not adopt 
the characteristic morphological features of megakaryocytes 
by microscopy (fig. S9G), suggesting that they are at best 
primed toward megakaryocytic differentiation (16, 17). 

To test our ability to better resolve specific interactions 
using Perturb-seq, we examined a strong synergistic interac-
tion identified by our fitness GI map between CBL and CNN1 
(calponin) that belonged to the erythroid cluster. CNN1 is a 
poorly characterized gene that is annotated as a smooth-mus-
cle-specific protein, although it is expressed in many cell 
types (19, 20). Overexpressing either gene induced similar 
transcriptional changes, and single-cell analysis revealed an 
apparent progression of phenotypes from unperturbed 
through singly-perturbed to doubly-perturbed CBL/CNN1 
cells (Fig. 3, C and D). Consistent with an erythroid transcrip-
tional program, overexpression of CBL and CNN1 caused 
strong induction of canonical markers: hemoglobin genes (6 
– 39-fold), an iron importer involved in heme biosynthesis 
(SLC25A37, 13-fold), and the blood group antigen CD235a 
(GYPA, 2-fold) (Fig. 3, C and E, and fig. S10, A and B) (17). 
Furthermore, overexpression of CBL and CNN1 transgenes in 
a human erythroid progenitor model (HUDEP2 cells) individ-
ually and in combination also induced markers of erythroid 
differentiation (Fig. 3, F and G, and fig. S10, C and D) (21). 

This example highlighted how Perturb-seq analysis can 
directly lead to a hypothesis about the biology underlying a 
GI even when one of the components is poorly understood. 
More generally, because our approach was sensitive to single-
cell phenotypes, incomplete differentiation and could simul-
taneously detect signatures of multiple differentiation states, 
it could facilitate higher-order combinatorial perturbation 
screens aimed at improving protocols for driving cells into 
distinct differentiation states. 

 
Quantitative modeling of GIs defines mechanisms of in-
teraction 
Our large collection of matched single and double overex-
pression transcriptional phenotypes provides us with the op-
portunity to quantitatively model GIs directly from 
transcription profiles, without appealing to the fitness GI 
map. We devised an approach based on fitting a regression 
model 1 2c c= + +δab δa δb   that decomposes the transcrip-

tional changes observed in doubly perturbed cells ( δab ) as a 
linear combination of the transcriptional changes induced by 
the two single perturbations of gene a and b ( 1 2c c+δa δb ) and 

an error term (  ) that contains unmodeled or nonlinear ef-
fects. The coefficients 1c  and 2c  then effectively measure how 

much of the phenotype is accounted for by each single per-
turbation (Fig. 4A). This linear model of transcriptional GIs 
explained more than 70% of the variance in gene expression 
on average (Fig. 4B; mean R2 = 0.71). 

GI maps traditionally classify interactions as either buff-
ering (indicating antagonism, GI score positive) or synthetic 
sick/lethal (SSL, indicating synergy, GI score negative). We 
observed a robust anti-correlation (R = -0.72) between the 
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magnitude of the coefficients 1c  and 2  c and the fitness-based 

GI score (Fig. 4C). An intuitive explanation was that buffering 
interactions travel less “far” (smaller coefficients) along the 
GI manifold while SSL interactions travel further (bigger co-
efficients) (Fig. 4A). 

To explore the ability of Perturb-seq to better resolve GIs 
(by analogy with past efforts in other systems, (1, 22, 23)), we 
examined two strong buffering interactions that each had 
scores of +10.1 in our fitness GI map but appeared to behave 
differently on a transcriptional level. Analysis by Perturb-seq 
revealed that the GI between KLF1 and CEBPA resulted from 
genetic epistasis (i.e., one single overexpression phenotype 
masking the other), resulting in smaller, asymmetrical coeffi-
cients ( 1c = 0.19, 2c = 0.72; Fig. 4D and fig. S11A). By contrast, 

the PTPN12/SNAI1 GI resulted from genetic suppression (i.e., 
when combined overexpression of two genes attenuated each 
other’s individual phenotypes), resulting in two smaller coef-
ficients (e.g., PTPN12/SNAI1, 1c = 0.60, 2c = 0.57; Fig. 4E and 

fig. S11B). Finally, as discussed above, synergistic or synthetic 
lethal interactions tended to result in two larger coefficients 
(e.g., CBL/CNN1, 1c = 1.24, 2c = 0.8; Fig. 3C and fig. S11C). 

A central question when considering GIs is how often new 
or unexpected (neomorphic) phenotypes emerge through the 
combined action of genes. A relatively small number of GIs 
(lower mode in Fig. 4B) deviated from the expectation given 
by the linear model (which we quantified by distance corre-
lation d; materials and methods and fig. S11D). A common 
neomorphic behavior, similar to one observed in yeast (22), 
occurred when a perturbation that had little transcriptional 
effect on its own appeared to enhance the effects of a second 
perturbation (e.g., FEV/CBFA2T3, d = 0.74; fig. S11E). We also 
observed relatively rare instances where double phenotypes 
appeared to be completely unexpected (e.g., the physical in-
teractors PLK4/STIL ((24) d = 0.53; fig. S11F)). The model’s 
parameters thus provided a simple, useful summary of how 
perturbations combine (table S9). 

To look for structure among interactions, we used a two-
dimensional visualization and clustering technique (25) (ta-
ble S9 and materials and methods). One axis grouped inter-
actions according to properties derived from the model 
coefficients ( 1c , 2c , d ), while the other grouped interactions 

according to how correlated the underlying transcriptional 
responses were (Methods). The resulting figure (Fig. 4F) iden-
tified numerous distinct categories of interaction, showing 
that the model can serve as a generalization of the one-di-
mensional “buffering vs. synthetic lethal” paradigm that has 
typically been used to categorize genetic interactions. 
 
Ordering genes into linear pathways using Perturb-seq 
The linear GI model allowed us to make hypotheses about 
gene regulation, as it can identify, for example, which single 

perturbation phenotype better explains the double perturba-
tion phenotype. We examined the strong GIs among the 
genes DUSP9, ETS2, and MAPK1. In the DUSP9/ETS2 inter-
action (Fig. 5A), the DUSP9 phenotype dominated, suggesting 
that DUSP9 overexpression antagonized ETS2. Similarly, 
DUSP9 and MAPK1 antagonized each other’s activities (Fig. 
5B). Finally, ETS2 and MAPK1 induced similar phenotypes, 
and ETS2 transcription was activated in all backgrounds (9.3-
fold in MAPK1, 9.2-fold in ETS2, and 35.8-fold in 
MAPK1/ETS2 overexpression; Fig. 5C). This type of interac-
tion, in which a perturbation (MAPK1) acts at least partly by 
upregulating its partner (ETS2), was uncommon in our da-
taset (fig. S11G). Taken together, these results suggested a lin-
ear regulatory pathway in which DUSP9 (a phosphatase) 
inhibits MAPK1 (a kinase) that activates ETS2 (a transcrip-
tion factor), which is consistent with the known biology of 
these gene families (Fig. 5D) (26). Following similar logic, the 
model allowed us to orient all the buffering interactions in 
which one perturbation is epistatic to another (Fig. 5E). 

 
Single-cell heterogeneity reveals the trajectory of GIs 
The single-cell resolution afforded by Perturb-seq can reveal 
phenotypic heterogeneity for some GIs that we reasoned 
could yield further insight into mechanism (Fig. 5F; compare 
fig. S8). For example, cells overexpressing both DUSP9 and 
MAPK1 showed a range of phenotypes spanning the tran-
scriptional states observed in cells overexpressing either 
DUSP9 or MAPK1 alone (Fig. 5G). In particular, we observed 
cells in which DUSP9 and MAPK1 appeared to suppress each 
other’s activity entirely. 

We reasoned that we could then identify DUSP9 or 
MAPK1 regulatory targets that showed differing sensitivity to 
the levels of these proteins by exploiting single-cell data. To 
order cells in an unbiased way by “phenotype,” we computed 
a principal curve measuring the path of maximum variation 
in the data set ((27); Fig. 5G and materials and methods). Ex-
amining median-filtered gene expression (Methods) along 
this curve revealed distinct classes of transcripts regulated by 
DUSP9 or MAPK1 activity (e.g., GYPA appeared to be more 
sensitive to DUSP9 activity than HBZ; Fig. 5H and fig. S12A). 
This variation did not appear to be the result of stable differ-
ences in the expression of MAPK1 and DUSP9 (fig. S12B), sug-
gesting a possible role either for historical differences or 
stochastic gene expression. Perturb-seq can therefore reveal 
graded phenotypes resulting from antagonism between two 
proteins. 
 
Predicting GIs using a recommender system 
One possible strategy to address the scale of genetic interac-
tions is to pursue a split experimental/computational ap-
proach, in which only a subset of interactions are sampled 
(either randomly or through “compressed” experimental 
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designs (28)) and the remainder are predicted computation-
ally (Fig. 6A) (7, 29, 30). Perturb-seq provides a scalable 
means of constraining these types of searches (7), enabling 
exploration of the GI landscape. 

There is substantial similarity between this problem and 
that of predicting a person’s shopping preferences based on 
past buying behavior, which is commonly addressed via “rec-
ommender system” algorithms. Many of these approaches 
can exploit low-rank structure like that seen in GI maps and 
leverage additional side information obtained by other 
means to improve predictive power. We examined the Per-
turb-seq profiles of single gene overexpression (fig. S13A) and 
found that there was a modest concordance between GI pro-
file and Perturb-seq profile correlations (R=0.29, p<10−103; fig. 
S13B), suggesting that the transcriptional data provided a 
complementary, scalable means of comparing genes that 
might inform GI prediction. 

We constructed a matrix factorization model for fitness 
GIs and then constrained this model to encourage similar in-
teraction profiles among genes that induced similar tran-
scriptional changes (fig. S14A and materials and methods) 
(30, 31). We then predicted unobserved GIs using this model 
trained on different fractions of randomly sub-sampled inter-
actions (Fig. 6A and materials and methods). The end result 
(Fig. 6B) preserved much of the large-scale structure of the 
map as seen through block-averaging of GI scores (Fig. 6, C 
and E; fig. S14B; and materials and methods) and through 
pairwise similarities between GI profiles (Fig. 6F). It was also 
substantially better than random sampling at predicting the 
top 10% of interactions and reasonably preserved the rank 
order of all interactions (Spearman ρ ≈ 0.5 at 10% sampling; 
Fig. 6E and fig. S14C). Notably, the use of Perturb-seq-derived 
single perturbation profiles as side information significantly 
improved performance (fig. S14D). These results suggest that 
the hybrid approach can nominate blocks of GIs for in-depth 
study. 

Finally, we used our data to model the minimum number 
of cells that would be required to perform larger experiments. 
By down-sampling our measured perturbations and re-per-
forming our analyses, we observed that as few as 50 cells per 
perturbation could be sufficient, meaning ~106 cells to collect 
side information for the entire set of protein coding se-
quences (Fig. 6G). 
 
Discussion 
A central goal of genetics is to understand the relationship 
between the set of genes a cell expresses and its phenotype. 
However, this relationship is challenging to study because 
many phenotypes emerge only through the coordinated ac-
tion of multiple genes. Here, we used Perturb-seq to manipu-
late a large number of gene pairs and then measure the 
resulting changes in cell state. This ensemble of 

measurements described a high-dimensional surface called a 
GI manifold. By interpreting and modeling the GI manifold, 
we can gain several insights into how complex phenotypes 
emerge. 

First, the transcriptional profiles can distinguish distinct 
outcomes such as cell death, slow growth, and differentiation 
to a variety of cell states that would appear equivalent at fit-
ness level. We also identified both canonical (e.g., KLF1, 
GATA1) and unexpected genes (e.g., CNN1) that interacted to 
promote differentiation to a specific cell state (erythrogene-
sis). As our single-cell approach is sensitive to multiple out-
comes or perturbations with incomplete penetrance, it is a 
natural strategy to pursue combinatorial searches for factors 
driving (trans)differentiation (4). Second, the shape of the GI 
manifold can reveal how GIs arise. We derived a simple, geo-
metric GI model and used it to identify the different ways in 
which genetic perturbations combine to yield new pheno-
types, for example allowing us to order genes into linear path-
ways. We and others have established that functionally 
related genes interact similarly—in geometric terms the GI 
manifold is therefore highly constrained, enabling imputa-
tion strategies (1, 2, 7, 12, 29). Our results provide a strategy 
for exploring large spaces of combinatorial genetic interac-
tions by measuring only a subset of fitness-level GIs. This pro-
vides a complementary approach to efforts based on 
composite measurements, compressed sensing, and rich 
readouts to predict unmeasured GIs (7, 28). By intelligently 
measuring and exploring the GI manifold, one can start to 
create a global view of the nonlinear mapping between geno-
type and phenotype. Such approaches should enable large-
scale searches for synthetic lethal interactions in cancer, the 
discovery of gene targets that lessen the severity of genetic 
disease, and, more generally, the understanding of how com-
plex, multigenic interactions govern biological traits and dis-
ease risk. 
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Fig. 1. A CRISPRa fitness-level genetic interaction (GI) map. (A) Experimental strategy. Pairs of genes were 
systematically co-activated using dual sgRNA CRISPRa libraries and a GI map was generated from the fitness 
measurements. A subset of GIs were then profiled transcriptionally using Perturb-seq. These high-dimensional 
measurements define a surface called a GI manifold. Distinct GIs that lie in markedly different parts of the GI manifold may 
result in similar outcomes when viewed only at the level of fitness. (B) CRISPRa fitness-level GI map. Gene-level GI profiles 
were clustered by average linkage hierarchical clustering based on Pearson correlation. Clusters were annotated by 
assigning DAVID annotations if a DAVID term was significantly enriched in that cluster (hypergeometric ln(p) ≤ -7.5; see 
Methods). (C and D) GI profile correlation between pairs of sgRNAs targeting any genes (black) or the same gene (green). 
Data are displayed as scatter plot of replicates (C) and histogram of replicate-averaged GIs (D). (E and F) Gene-level GI 
scores generated by averaging all sgRNA-level GIs for each gene pair. (E) Scatter plot of replicates. Red points indicate 
non-targeting control sgRNA pairs and dashed line indicates a radius of 6 standard deviations from non-targeting controls. 
(F) Histogram of gene-level GI scores with estimated empirical 5% FDR threshold. (G) Comparison of fold activation of 
target gene measured by Perturb-seq when the targeting sgRNA is in the A or B position in the dual sgRNA expression 
cassette. (H) Fold activation of the target gene compared with the total number of differentially expressed genes. 
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Fig. 2. Visualization of the GI manifold. (A) Using diverse genetic perturbations, the structure of the GI manifold can be 
inferred and then visualized by dimensionality reduction to a plane. (B) UMAP projection of all single gene and gene pair 
Perturb-seq profiles. Each dot represents a genetic perturbation characterized by its mean expression profile. Clusters 
of transcriptionally similar perturbations are colored identically, while grey dots are genes that do not fall within stable 
clusters. (C) Fitness measurements from the GI map, expressed as gene pair growth phenotypes (γ). (D) GI scores from 
the fitness-level GI map. Single gene perturbations are not included. (E) Cell cycle deviation scores. Stronger scores 
indicate alteration from the distribution of cell cycle positions observed in unperturbed cells. (F) Relative enrichment or 
depletion of cell cycle phases relative to unperturbed cells induced by selected genetic perturbations.  
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Fig. 3. Dissecting a genetic interaction using Perturb-seq. (A) Expression of marker genes for 
different hematopoietic cell types in GI manifold UMAP projection. Color is scaled by mean expression 
Z-score of a marker gene panel. (B) Hematopoietic differentiation hierarchy. K562 cells are a poorly 
differentiated erythroid-like cancer cell line. (C) Perturb-seq profiling of the CBL/CNN1 GI. Average 
transcriptional profiles for the two constituent single perturbations are compared to the double 
perturbation. Heatmaps show deviation in gene expression relative to unperturbed cells. (D) UMAP 
projection of single-cell Perturb-seq data in the CBL/CNN1 interaction. Each dot is a cell colored 
according to genetic background. (E) ARCHS4 (35) cell type term enrichment for genes showing large 
expression changes in CBL/CNN1 doubly-perturbed cells. (F) Expression of hemoglobin in HUDEP2 
cells upon cDNA overexpression of CBL or CNN1. Hemoglobin was labeled with anti-HbF antibody and 
measured by flow cytometry. (G) Pelleted HUDEP2 cells. Hemoglobin expression appears red. 
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Fig. 4. A quantitative model for high-dimensional GIs. (A) Model of transcriptional genetic interactions. Different 
transcriptional states define points on the surface of the GI manifold and genetic perturbations define vectors of travel. 
The model decomposes double perturbations as a linear combination of the two constituent single perturbations. (B) 
Model fit across all GIs measured with Perturb-seq. (C) Magnitude of model coefficients compared to GI score from the 
fitness-level GI map. (D and E) Application of the model to selected GIs. For each GI, transcriptional profiles for the two 
constituent single perturbations are compared to the double perturbation and the model fit. Heatmaps show deviation in 
gene expression relative to unperturbed cells. (F) Visualization of all measured GIs in Perturb-seq experiment. Each GI 
was characterized using features derived from the model (x-axis) and by measures of similarity among the transcriptional 
profiles (y-axis). These two viewpoints were each clustered and collapsed to a single dimension using UMAP to define the 
two axes. The features defining the two axes are plotted next to them. Categories of GIs are annotated based on features 
shared within the clusters. 
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Fig. 5. Inferring gene regulatory logic underlying GIs. (A to C) Application of linear genetic interaction 
model to GIs among DUSP9, MAPK1, and ETS2. (D) Order of pathway inferred from model fits. (E) Epistatic 
buffering interactions oriented using the genetic interaction model. Each arrow denotes a genetic interaction, 
originating in the gene that dominates when the two genes are simultaneously perturbed. Arrow size denotes 
the degree of dominance as measured by asymmetry of model coefficients. Genetic perturbations with 
similar transcriptional profiles are colored identically. (F) Stochastic heterogeneity can cause individual cells 
(dots) bearing a given genetic perturbation to explore the space on the GI manifold surrounding the average 
direction of travel (arrows). (G) UMAP projection of single cells with overexpression of DUSP9 and/or MAPK1. 
Black line represents the principal curve, which tracks the primary direction of variation in the dataset that 
can be used to order all cells. (H) Gene expression averaged along the principal curve. Each row denotes a 
cell ordered according to position along the principal curve. The left three columns indicate that cell’s genetic 
background. At each point, cells that are close on the principal curve are averaged to produce a local estimate 
of median gene expression. The heatmap shows normalized expression of differentially expressed genes. The 
DUSP9 and MAPK1 expression columns show the same data for the targeted genes.  
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Fig. 6. A recommender system for exploring the GI landscape. (A) Schematic of 
prediction strategy. Fitness phenotypes of a limited subset of GIs are measured. Each 
gene is characterized by its Perturb-seq transcriptional profile, and similarity among 
these profiles is used as side information to constrain a recommender system model to 
impute remaining fitness GI scores and highlight regions of interest. (B) True vs. 
predicted GI map obtained by prediction from 10% of randomly sampled fitness-level GIs. 
(C) Block-averaged true and predicted GI maps obtained by averaging GI scores within 
clusters. (D) Scatter plot of true and predicted GI scores (blue dots) from (B). The dashed 
lines show 5% and 95% quantiles, used to designate strong GIs. Orange dots show 
equivalent scatter for block-averaged GI scores in (C). (E) Spearman correlation between 
true and predicted GI scores at different levels of random sampling. Fifty random subsets 
were measured for each sampling level. Blue and orange denote individual and block-
averaged GIs. (F) Cophenetic correlation of GI profiles as a function of sampling level, 
measuring the similarity of correlation structure in the true and predicted GI maps. (G) 
To assess scaling ability, the representation of each perturbation in the Perturb-seq 
experiment was randomly downsampled to different levels of representation. Plot shows 
cophenetic correlation between downsampled and true transcriptional profiles used to 
construct the GI manifold visualization of Fig. 2. 
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