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INTRODUCTION: The fundamental instructions
of life are encoded in the DNA sequences of all
living organisms. Understanding these instruc-
tions could unlock deeper insights into biological
processes and enable new ways to reprogram
biology into useful technologies. However, even
the simplest microbial genomes are incredibly
complex, withmillions of DNA base pairs encod-
ing the interplay of DNA, RNA, and proteins—
the three modalities of the so-called central
dogma ofmolecular biology and the key actors
in cellular function. This complexity exists at
multiple scales, from individual molecules to

whole genomes, representing a vast landscape
of genetic information that has been function-
ally selected over evolutionary time.

RATIONALE: Rapid progress in artificial intel-
ligence (AI) has led to large language models
that demonstrate increasingly advanced multi-
task reasoning and generation capabilities when
trained on massive amounts of data. However,
technological limitations in the architecture
of these models have restricted efforts to ap-
ply them to biology at a similar scale. Current
approaches struggle to analyze sequences at

the individual character level and are compu-
tationally demanding when applied to long
sequences. An advanced model maintaining
single-nucleotide resolution over large genomic
sequences could potentially extract functional
information about the complex molecular in-
teractions that are embedded in the patterns
of natural evolutionary variation.

RESULTS: In this work, we present Evo, a ge-
nomic foundation model that enables predic-
tion and generation tasks from themolecular to
the genome scale. Using an architecture based
on advances in deep signal processing, we scaled
Evo to 7 billion parameters with a context length
of 131 kilobases at single-nucleotide resolution.
We report scaling laws on DNA, complement-
ing similar observations in natural language
and vision. Trained on 2.7 million prokaryotic
and phage genomes, Evo demonstrates zero-
shot function prediction across DNA, RNA, and
protein modalities that is competitive with—or
outperforms—domain-specific language mod-
els. Evo also excels at multimodal generation
tasks, which we demonstrated by generating
synthetic CRISPR-Cas molecular complexes and
transposable systems. We experimentally vali-
dated the functional activity of Evo-generated
CRISPR-Cas molecular complexes as well as
IS200 and IS605 transposable systems, repre-
senting the first examples of protein-RNA and
protein-DNA codesign with a language model.
Using information learned over whole genomes,
Evo learns how small changes in nucleotide se-
quence affect whole-organism fitness and can
generate DNA sequences with plausible genomic
architecture more than 1 megabase in length.

CONCLUSION: Evo is a foundation model that is
designed to capture two fundamental aspects of
biology: the multimodality of the central dogma
and the multiscale nature of evolution. The cen-
tral dogma integrates DNA, RNA, and proteins
with a unified code and predictable information
flow, whereas evolution unifies the vastly dif-
ferent length scales of biological function rep-
resented by molecules, pathways, cells, and
organisms. Evo learns both of these represen-
tations from the whole-genome sequences of
millions of organisms to enable prediction and
design tasks from themolecular to genome scale.
Further development of large-scale biological
sequence models like Evo, combined with ad-
vances in DNA synthesis and genome engineer-
ing, will accelerate our ability to engineer life.▪
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Evo: A genomic foundation model

Systems scale
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Evo, a 7-billion-parameter genomic foundation model, learns biological complexity from individual
nucleotides to whole genomes. Trained on 2.7 million raw prokaryotic and phage genome sequences, Evo is
naturally multimodal, enabling the codesign of DNA, RNA, and protein molecules that form higher-order
functional systems. Evo is also inherently multiscale, enabling prediction and generation tasks at the level
of molecules, systems, and genomes.
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The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an organism’s
function. We present Evo, a long-context genomic foundation model with a frontier architecture
trained on millions of prokaryotic and phage genomes, and report scaling laws on DNA to complement
observations in language and vision. Evo generalizes across DNA, RNA, and proteins, enabling
zero-shot function prediction competitive with domain-specific language models and the generation
of functional CRISPR-Cas and transposon systems, representing the first examples of protein-RNA
and protein-DNA codesign with a language model. Evo also learns how small mutations affect whole-
organism fitness and generates megabase-scale sequences with plausible genomic architecture.
These prediction and generation capabilities span molecular to genomic scales of complexity, advancing
our understanding and control of biology.

D
NA is the fundamental layer of biolog-
ical information that is responsible for
transmitting the results of evolution
across generations of life (1–3). Evolu-
tionary variation in genome sequences

reflects adaptation and selection for biological
function at the phenotypic level (4). Rapid ad-
vances in DNA sequencing technologies have
enabled the systematic mapping of this evolu-
tionary diversity at the whole-genome scale.
A machine that learns this breadth of in-

formation across genomes could model the
function of DNA, RNA, and proteins as well
as their diverse interactions that orchestrate
complex biological functions, mediate disease,
or create a complete organism. Modernmachine
learning algorithms combined with massive
datasets of genomic sequences could enable a
general biological foundation model that learns
the intrinsic logic of whole genomes.
However, current efforts tomodelmolecular

biology with machine learning have been fo-

cused on creating modality-specific models that
are specialized to proteins, coding sequences,
RNA, or regulatory DNA (5–9). In addition, gen-
erative applications in biology have been limited
to the design of single molecules, simple com-
plexes (10–12), or short DNA sequences (13, 14).
By contrast, complex biological processes, such
as gene regulation, CRISPR immunity, or ge-
netic transposition, rely on many interactions
involving molecules across multiple modalities.
A DNAmodel that unifies information across

themolecular, systems, and genome scales could
learn from large genomic regions to capture
systems-wide interactions and enable the de-
sign of more-sophisticated biological functions.
By operating at single-nucleotide resolution,
this model would be able to incorporate the
evolutionary effects of sequence variation, such
as individual single-nucleotidemutations, that
can completely alter organism function.
Inspired by the recent success of large lan-

guage models, many approaches have applied
similar modeling techniques to biological se-
quences. However, existing attempts to model
DNA as a language (15–17) are limited by the
prevailingdenseTransformer architecture,which
incurs high computational cost as input sequence
lengths grow relative to model width (scaling
quadratically) and generally underperforms at
single-nucleotide or byte-level resolution com-
pared with models trained at coarser reso-
lutions (18). Recent algorithmic advances in
extending context length of attention-based
models (19, 20) have similar resolution limi-
tations. As a result, Transformer-based DNA
models are constrained to short context lengths
and use schemes that aggregate nucleotides
into the basic units of language models, called

tokens, thereby sacrificing single-nucleotide
resolution (15, 16, 21–23).
We present Evo, a 7-billion-parameter ge-

nomic foundation model trained to generate
DNA sequences at whole-genome scale. Evo
uses a context length of 131,072 tokens and is
based on the StripedHyena architecture (24),
which hybridizes attention and data-controlled
convolutional operators to efficiently process
and recall patterns in long sequences. Evo is
trained on a prokaryotic whole-genome data-
set consisting of 300 billion nucleotides and
uses a byte-level, single-nucleotide tokenizer.
By conducting a scaling laws analysis for DNA
pretraining, we observe predictable performance
gain with larger scale.
We demonstrate that Evo can be used in

both prediction and generation tasks at the
molecular, systems, and genome scale. In zero-
shot evaluations, Evo is competitive with pro-
tein language models at predicting the fitness
effects of mutations on bacterial proteins, out-
performs RNA language models in predicting
fitness effects ofmutations onnoncodingRNAs
(ncRNAs), and predicts how regulatory DNA
sequence composition controls gene expression.
Evo also learns the coevolutionary linkage of
coding andnoncoding sequences to design func-
tional biological systems including CRISPR-Cas
ribonucleoprotein complexes and transposable
elements, requiring codesign of protein-RNA
and protein-DNA systems, respectively.
At the whole-genome scale, Evo understands

how small mutations in genomes affect organis-
mal fitness, indicating its ability to learn aspects
of gene function within a broader genomic
context. We also use Evo to generate genome-
scale sequences with plausible high-level archi-
tecturemore than 1 megabase (Mb) in length, a
scale that is orders of magnitude greater than
previous methods (10, 13, 14). Taken together,
Evo establishes a foundational paradigm for
predictive and generative biological model-
ing (Fig. 1A) that could enable a deeper under-
standing of biology and accelerate our ability
to engineer life.

Modeling long sequences at nucleotide
resolution with the StripedHyena architecture

Evo is a genomic foundation model with 7 bil-
lion parameters trained with a context length
of up to 131,072 tokens, using single-nucleotide,
byte-level tokenization. Tomodel long sequences
at nucleotide resolution efficiently, we lever-
aged the StripedHyena architecture (24) (Fig.
1B) that builds on emerging techniques in deep
signal processing (25–28). Themodel is a hybrid
of 29 layers of data-controlled convolutional
operators (hyena layers) interleaved with three
layers (10%) of multihead attention equipped
with rotary position embeddings (RoPEs) (29)
(table S1 and Materials and methods).
Hyena layers process sequences in an input-

dependent manner using compositions of short
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and long convolution filters (Fig. 1B), making
the layer especially effective at filtering noisy
patterns that can occur in DNA and at ag-
gregating individual nucleotides into motifs.
Model hybridization, first proposed to ad-
dress shortcomings of state-space models
(30–32), has recently been shown to improve
scaling performance on language modeling
of both standalone Hyena and Transformer
architectures (24). Compared with HyenaDNA
(33), a previous generation of DNA models
leveraging a Hyena architecture (34), Evo is
based on an improved hybrid design and scaled
to 1000× larger model size and 100×more data.

Training Evo at scale on OpenGenome

We compiled a large genome dataset called
OpenGenome (Materials and methods) with
more than 80,000 bacterial and archaeal ge-

nomes and millions of predicted phage and
plasmid sequences, covering 300 billion nucleo-
tide tokens (Fig. 1, C to E; fig. S1; and table S2)
(35–37). For safety considerations, we excluded
viral genomes that infect eukaryotic hosts. Like
most language models, Evo is pretrained using
a next-token prediction objective on raw ge-
nome sequences with no explicit supervision or
annotations. Pretraining involved a first stage
using a context length of 8192 tokens and a sec-
ond context-extension stage using a context
length of 131,072 tokens.

StripedHyena demonstrates favorable scaling
laws on DNA sequence data

Aidingourmodeldesign,weperformeda scaling
laws analysis for DNA sequence modeling to
determine the relationship between training,
architectural details, and performancemetrics

through a systematic experimental protocol
(38, 39). Once a set of scaling laws is obtained,
it can then be used as a guide to optimally scale
training to larger models and datasets.
We compare different classes of architec-

tures using a compute-optimal protocol, aimed
at evaluating results on the compute-optimal
frontier (Materials and methods). We trained
more than 300 models across four architec-
tures: Transformer++, Mamba, Hyena, and
StripedHyena (table S3). Transformer++ is a
state-of-the-art Transformer, and Mamba is
a modern architecture using data-controlled
state-space models (40).
We foundTransformer++ to yield substantial-

ly worse perplexity (ameasure of next token pre-
diction quality) at all compute budgets (Fig. 1, F
and G), a symptom of the inefficiency of the ar-
chitecture at the byte resolution. Both state-space
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Fig. 1. Pretraining a genomic foundation model across prokaryotic life.
(A) A model of genome sequences at single-nucleotide resolution could learn all
of the information encoded in regulatory DNA and in the sequences of the other
modalities within the central dogma (proteins, coding RNA, and ncRNA). Even
further, it could learn covariation involving multiple genes and regulatory elements.
The status of DNA as the fundamental layer of biological information makes it a
productive modality at which to develop a biological foundation model. (B) A model
that predicts the likelihood of the next token given a sequence of tokens, referred
to as autoregressive modeling, can learn complex patterns underlying DNA sequences.
StripedHyena is a deep signal processing architecture for long sequences, obtained
by hybridizing attention and hyena operators. GLU, gated linear units. (C) We

pretrained Evo, a 7-billion-parameter model with the StripedHyena architecture, on
bacterial genome sequences from GTDB and IMG/PR and viral sequences from
IMG/VR, excluding sequences from viruses that infect eukaryotic hosts. (D) A
histogram depicting the sequence length of the genomes in GTDB. mb, megabases.
(E) Pie charts depicting the taxonomic makeup of GTDB based on the kingdom
(left) and phylum (right). (F) Results from a first-of-its-kind scaling laws analysis
for large-scale DNA pretraining. Models improve monotonically with scale, with
significant differences between architectures. Eval. PPL, evaluation perplexity.
(G) To determine optimal architecture and scaling for Evo, we compared scaling
rates of different models pretrained on the compute-optimal frontier, i.e., with
optimal allocation of compute between dataset size and model size.
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and deep signal processing architectures had an
improved scaling rate over Transformer++, with
Hyena and StripedHyena resulting in the best
scaling rate. We observed stable training for
StripedHyena throughout all the studiedmod-
el sizes and learning rates during the scaling
analysis.
We also compare architecture performance

outside the compute-optimal frontier, namely
with allocations of the computational budget
that may be suboptimal. Performance outside
the compute-optimal frontier is important in
practice, as most models (including Evo) are
trained for more tokens than recommended by
compute-optimal scaling laws. We estimate
250 billion to be the compute-optimal num-
ber of tokens for Evo 7B given the floating point
operation (FLOP) budget, meaning the model
was trained at a 17% offset from the compute-
optimal model size during the initial 8192 se-
quence length pretraining phase of 300 billion
tokens. Both Transformer++ and Mamba expe-
rienced numerical instability during training
and suffered from a higher performance degra-
dation of the scaling rate outside the compute-
optimal frontier, in contrast to StripedHyena
(figs. S3 to S7). These findings motivate the choice
of StripedHyena as the architecture for Evo.

Evo learns across DNA, RNA,
and protein modalities
Predicting mutational effects on
protein function

Beyond evaluating perplexity, we next inves-
tigated the model’s zero-shot performance on
biologically relevant downstream tasks. For
example, language models specifically trained
on large corpuses of protein sequences or nu-
cleotide coding sequences have demonstrated
an ability to predict mutational effects on pro-
tein function (41–43) without any task-specific
fine-tuning or supervision. Because Evo’s train-
ing data contains protein coding sequences, we
tested whether the model could also perform
zero-shot protein function prediction. Notably,
Evo is trained on genomic sequences without
any explicit coding sequence annotations.
Following work in evaluation of protein lan-

guage models, we leveraged deep mutational
scanning (DMS) studies, which introduce an
exhaustive set ofmutations to a protein coding
sequence and then experimentally measure
the effects of these mutations on various fit-
ness metrics, which quantify functional activ-
ity (42, 44, 45). The language-model likelihood
or pseudolikelihood (Materials and methods)
of the amino acid sequence is used to predict
the experimental fitness score (Fig. 2A). To
adapt this task to nucleotide sequences, we
use the wild-type coding sequence and nucle-
otide mutations reported in the original DMS
studies (Materials and methods).
On DMS datasets of prokaryotic proteins,

Evo’s zero-shot performance exceeded all other

nucleotide models tested (Fig. 2B and table
S4), includingGenSLM (15)—amodel explicitly
trained only on coding sequences with a codon
vocabulary (Fig. 1A). Evo also reaches com-
petitive performance with leading protein-
specific language models (41, 46–48) (Fig. 2B).
Previous work has shown that improvement
beyond this performance range is difficult for
protein language models with self-supervised
pretraining alone (49), indicating that Evo is
already competitive with state-of-the-art pro-
tein language modeling on bacterial proteins.
On DMS datasets of human proteins, Evo is
unable to predict mutational effects on fitness
(fig. S8A and table S5), most likely because the
pretraining dataset is composed of prokaryotic
sequences. However, we observed a strong as-
sociation between language-model perplexity
on the wild-type sequence and fitness predic-
tion performance (fig. S8B), which indicates
that additional fine-tuning or future pretrain-
ing on mammalian coding sequences could
improve Evo’s performance beyond bacterial
proteins.

Predicting mutational effects on ncRNA function

Next, we tested whether the same pretrained
model could learn functional information about
ncRNAs, suchas tRNAs, ribosomalRNAs (rRNAs),
and ribozymes. We collected ncRNADMS data-
sets (Materials and methods) and evaluated
Evo’s ability to perform zero-shot ncRNA fit-
ness prediction using the results of experimental
ncRNA DMS studies as the ground truth score
(Fig. 2C).
We found that Evo again outperforms all

other tested nucleotide language models at this
task, including RNA-FM (50), an RNA language
model that is explicitly trained on ncRNA se-
quences (Fig. 2D and table S6). We observed
especially strong predictive performance on a
study that measured the effects of mutations
to the 5S rRNAon the growth rate ofEscherichia
coli (Spearman correlation coefficient r = 0.60,
two-sided t-distributed P = 1.9 × 10−3) (51).
Beyond protein sequences, these results dem-
onstrate that Evo can learn mutational effects
on ncRNA function.

Predicting activity of regulatory DNA

Given that Evo’s training also contains pro-
karyotic regulatory DNA sequences, we inves-
tigated whether Evo has learned information
that is useful for regulatory DNA tasks. We fo-
cused on predicting gene expression from pro-
moter sequences and protein expression from
sequences of ribosome-binding sites (RBSs)
(Fig. 2E).
For supervised promoter activity prediction,

we followed a previous study (52) in which a
regression model is developed using train and
validation splits from a single study, and the
final model is then tested on promoter data-
sets from other studies to assess out-of-domain

generalizability (Materials and methods). We
used the three test datasets from LaFleur et al.
(52–55) and a dataset in which Kosuri et al.
constructed ~12,000 combinations of common
promoters and RBSs and measured the corre-
spondingmRNA expression of a reporter gene
for each promoter-RBS pair in E. coli (56).
Evo’s zero-shot likelihoods had non-negligible

correlation with promoter activity across
these four studies (mean Spearman r = 0.43).
These correlations also exceed those of the se-
quence guanine-cytosine (GC) content (mean
Spearman r = 0.35) and the zero-shot like-
lihoods of GenSLM (mean Spearman r = 0.09)
(Fig. 2F and table S7). We also trained two
supervised models, a ridge regression linear
model and a convolutional neural network
(CNN), on either Evo embeddings or one-hot-
encoded sequence. The CNN architecture sub-
stantially outperformed ridge regression across
both embeddings, and the Evo embeddings
substantially outperformed one-hot embed-
dings across both architectures (Fig. 2F and
table S7). Notably, even zero-shot Evo likeli-
hoods had comparable predictive performance
(mean Spearman r= 0.43) to a CNN trained on
one-hot embeddings (mean Spearman r =
0.44), which indicates that Evo’s pretraining
contributes useful information to function
prediction. Combining the Evo embeddings
with a supervised CNN architecture (mean
Spearman r = 0.56) also approached the per-
formance of Promoter Calculator (52), a state-of-
the-art method for promoter activity prediction
(mean Spearman r = 0.62). These results indi-
cate that Evo has learned sequence-intrinsic
information that is a useful correlate of pro-
moter activity and motivates improving zero-
shot learning within the foundation model to
improve downstream performance in specific,
supervised tasks.
For protein expression prediction, we used

the dataset collected by Kosuri et al. (56),
which contains RBSs in addition to promoters
and which also measured protein expression
in addition to mRNA expression. Evo’s zero-
shot likelihoods of the RBS sequence alone
had weak correlation with protein expression
(Spearman r = 0.17). However, when concat-
enating the promoter and RBS sequence to-
gether, Evo’s zero-shot likelihoods improved
substantially (Spearman r = 0.61); this cor-
relation is also higher than the zero-shot cor-
relation of just the promoter sequence alone
(Spearman r = 0.47), which indicates that
additional regulatory sequence could provide
useful functional context. Evo’s zero-shot cor-
relation on promoter-RBS sequences is also
higher than the GC content of the promoter-
RBS sequences (Spearman r = 0.47), zero-
shot GenSLM likelihoods (Spearman r= 0.11),
and RBS Calculator (Spearman r = 0.39)—a
state-of-the-art protein expression predictor
(Fig. 2G) (57, 58).
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Overall, we show how a single model can per-
form well on tasks that have previously been
accomplished by different, domain-specificmod-
els. Despite being trained on long genomic se-
quences without explicit annotations, Evo
demonstrates a robust and general understand-
ing of the constitutive protein coding sequences,
ncRNA sequences, and regulatory elements.

Generative design of CRISPR-Cas
molecular complexes

Next, we reasoned that Evo should be able to
generate functional complexes that involve
interactions between distinct molecular mod-
alities. In prokaryotes, functionally related
genes are generally organized into operons and

located next to each other on the genome se-
quence. Because Evo learns covariation patterns
involving any genetic elements within its con-
text window, the model should understand in-
teractions between encoded protein and ncRNA
molecules. To demonstrate this capability, we
fine-tuned Evo on a dataset of genomic loci
containing CRISPR-Cas sequences—molecular
machines that consist of protein and ncRNA
components that, together, direct adaptive im-
munity against viral infection (59).
The DNA-targeting Cas9 nuclease is typical-

ly encoded within 3000 to 4800 base pairs (bp)
of coding sequence and found in close genomic
proximity to its cognate CRISPR array (60).
Transcription from the CRISPR array generates

noncoding CRISPR RNA (crRNA) molecules
that are bound by the Cas protein to generate
a functional defense complex that is required
for sequence-specific DNA targeting (Fig. 3A).
For Cas9 in particular, a second trans-activating
CRISPR RNA (tracrRNA) forms a duplex with
the crRNA to create a full guide RNA (gRNA).
Diverse families of CRISPR-Cas systems are
found throughout bacterial and archaeal life,
such as Cas12- or Cas13-based systems that tar-
get DNA and RNA, respectively (61).
We fine-tuned Evo on 72,831 CRISPR-Cas

loci extracted from public metagenomic and
genomic sequences, adding special prompt
tokens for Cas9, Cas12, and Cas13 that were
prepended to the beginning of each training

Fig. 2. Evo learns function across proteins, ncRNAs, and regulatory DNA.
(A) We obtained DMS datasets in which many mutations are made to a
protein and a corresponding fitness score is experimentally measured for each
protein variant. On the same set of mutated sequences, we compute its
likelihood (or pseudolikelihood) under a protein language model or a nucleotide
language model (LM). We then correlated these likelihoods with the experimental
fitness measurements and used the strength of the correlation to measure
the performance of zero-shot function prediction. (B) Correlation between
zero-shot language model likelihoods or pseudolikelihoods and experimental
fitness across nine prokaryotic protein DMS datasets. Bar height indicates the
mean; each dot indicates a different DMS study. Nucl. Trans., Nucleotide
Transformer. (C) We obtained datasets in which many mutations are made to
a ncRNA and a corresponding fitness score is experimentally measured.
Predictive performance is measured as in the method described in (A).
(D) Correlation between zero-shot language model likelihoods or pseudolikelihoods
and experimental fitness across seven ncRNA DMS datasets. Bar height

indicates the mean; each dot indicates a different DMS study. (E) We obtained
datasets in which many regulatory DNA sequences were measured for their
effect on mRNA or protein expression. (F) Correlation between promoter activity
across four studies and zero-shot language model likelihoods, sequence GC
content, or supervised models. The supervised models include ridge regression
or a CNN trained on one-hot embeddings or Evo embeddings, as well as a
state-of-the-art supervised biophysical model of promoter activity, Promoter
Calculator (52). Supervised models are evaluated in an out-of-domain prediction
setting (Materials and methods). Ridge reg., ridge regression. Bar height
indicates the mean; each dot indicates a different promoter activity study.
(G) We obtained a dataset in which Kosuri et al. (56) measured protein expression of
a gene downstream of ~12,000 promoter-RBS pairs in E. coli. When
provided with both the promoter and RBS sequences, Evo has higher predictive
performance of protein expression compared with zero-shot sequence statistics
or a method trained with some supervision to predict protein expression data
from mRNA sequence.
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sequence (Fig. 3B). During sampling, these to-
kens allow us to guide generation of a specific
CRISPR-Cas system type by prompting with
the corresponding special token. Sampling 8-kb
sequences using each of the three Cas token
prompts resulted in coherent generations con-
taining Cas coding sequences and CRISPR
arrays corresponding to the expected sub-
type (Fig. 3C and Materials and methods).
Evo generations were classified as Cas9, Cas12,
or Cas13 sequences if they contained a CRISPR
array detected with the MinCED package and
an open reading frame (ORF) that returns a
positive hit using a Cas9, Cas12, or Cas13 pro-
file hidden Markov model (pHMM), with a
significance threshold of an E value < 1 × 10−3.
Sequence alignment with the training dataset
revealed that some of the predicted ORFs that

returned a positive hit using a Cas9 pHMM
also exhibited <40% protein sequence iden-
tity to the closest natural Cas9 (Fig. 3D). We
also found that the Evo model fine-tuned on
CRISPR-Cas loci produces higher quality and
more diverse generations across all Cas sub-
types comparedwith amodel trained solely on
CRISPR-Cas sequences (Fig. 3D and Materials
and methods).
Next, we filtered ~2 million Evo-generated

sequences for Cas9 loci that contained a Cas9
ORF with RuvC and HNH domains, a CRISPR
repeat array, and a detectable tracrRNA se-
quence (fig. S9), selecting 11 Cas9 systemswith
robust predicted local distance difference test
(pLDDT) scores for functional validation. These
samples contain conserved CRISPR-associated
genes such as Cas1 andCas2 involved in CRISPR

adaptation, and the positional entropies from
the fine-tuned Evo model delimit the bound-
aries of the protein-coding genes within the
locus as well as the noncoding CRISPR repeat
motifs (Fig. 3E).
We evaluated the 11 Cas9 generations using

an initial in vitro transcription-translation as-
say followed by the introduction of a DNA
target containing an NGG protospacer adja-
cent motif (PAM) sequence (fig. S14). One of
the generations exhibited robust activity,
which we named EvoCas9-1. Recombinant
expression and purification of EvoCas9-1 paired
with chemically synthesized Evo-generated
single guide RNA (sgRNA) exhibited com-
parable in vitro cleavage activity to SpCas9
paired with the canonical SpCas9 sgRNA
(Fig. 3F) (62, 63). We further observed that the
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sequence
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Fig. 3. Fine-tuning on CRISPR-Cas sequences enables generative design of
protein-RNA complexes. (A) Design task: Generating sequences encoding
CRISPR-Cas defense complexes composed of protein and ncRNA components.
(B) Fine-tuning Evo on 8-kb-length genomic sequences containing CRISPR-Cas
systems after its initial 8k pretraining phase. Special conditioning tokens
(“cas9,” “cas12,” or “cas13”) prepended to the beginning of each sequence during
fine-tuning. (C) When prompting with the token for a given type of Cas protein,
the most common Cas protein found in the resulting generated sequences
corresponds to that token prompt (Materials and methods). (D) Histograms
representing the distribution of percentage identity of a generated Cas protein
sequence to any Cas protein sequence in the training dataset. Samples from
a model trained only on CRISPR-Cas sequences (top) and samples from a
model fine-tuned on CRISPR-Cas off the base Evo model (bottom). Both models
were trained on CRISPR-Cas sequences using the same hyperparameters.

(E) Annotated core protein-coding genes and ncRNA components found in
type II CRISPR systems in the EvoCas9-1 locus as determined by pHMMs and
CRISPR ncRNA prediction algorithms. (F) Time course results for SpCas9
and EvoCas9-1 cleavage reactions after incubation with cognate sgRNAs and
1 nM DNA target at a 10:10:1 molar ratio of Cas9:sgRNA:target. Nontargeting
guide RNA used to verify in vitro cleavage specificity. (G) Predicted secondary
structure of the sgRNA from the EvoCas9-1 generation. Secondary structure
differences between the EvoCas9-1 sgRNA and the SpCas9 sgRNA are
highlighted in red. (H) AlphaFold3 (AF3) structure prediction of EvoCas9-
1 aligned to the crystal structure of SpCas9 (PDB: 4OO8). (I) AlphaFold3 (AF3)
structure prediction of the EvoCas9-1 sgRNA aligned to the crystal structure
(PDB: 4OO8) of the SpCas9 sgRNA (79 nt scaffold + 20 nt spacer). nt,
nucleotide. (J) AlphaFold3 (AF3) structure prediction of EvoCas9-1 in complex
with its codesigned sgRNA (81 nt scaffold + 20 nt spacer).
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Evo-generated sgRNA also improved cleav-
age efficiency of SpCas9 when compared with
a canonical SpCas9 sgRNA (fig. S15 and Ma-
terials and methods).
The EvoCas9-1 amino acid sequence shares

79.9% identity with the closest Cas9 in the data-
base of Cas proteins used for model fine-tuning
and 73.1% identity with SpCas9. Evo-designed
sgRNA is 91.1% identical to the canonical SpCas9
sgRNA and exhibits secondary structure differ-
ences in the two terminal stem loops, notably
extending the length of stem loops 2 and 3 (Fig.
3G). Although the predicted backbone struc-
ture of EvoCas9-1 resembles that of SpCas9,
the predicted structure of EvoCas9-1 exhibits a
more positive surface charge distribution (Fig.
3H and fig. S16B). The isolated sgRNA struc-
tures from the SpCas9 crystal structure and
the structure of the EvoCas9-1 sgRNA predicted
by theAlphaFold3model (64) show strong agree-
ment in RNA secondary structure (Fig. 3I).
The AlphaFold3 cofolded structure prediction
for EvoCas9-1 has a highmean pLDDT score of
90 across its protein, RNA, and DNA compo-
nents (Fig. 3J).
EvoCas9-1 was generated from just 11 code-

signs, representing a robust success rate given
the complexity of Cas9’s multistepmechanism
(fig. S14), which requires intricate coordination
of protein domains and nucleic acid interac-
tions. Furthermore, the diverse generations
were tested on a single NGG PAM, and this
sequence preference is known to vary across
Cas9 orthologs.
Designing new Cas systems currently relies

on mining sequence databases for homologous
proteins, where natural evolution provides func-
tional diversity. By leveraging Evo’s inherent
multimodal capabilities,we can codesignprotein-
RNA complexes with a single language model,
providing a design methodology that can be
harnessed across the broad diversity of CRISPR
systems and expanding the repertoire of CRISPR
technologies beyond what is found in nature.

Generative design of transposon systems

In addition to molecular complexes, Evo learns
patterns underlying multigene systems. Mobile
genetic elements (MGEs) are biological sys-
tems that often containmultiple genes and are
found throughout all domains of life. Their
opportunistic spread drives sequence varia-
tion, new gene function, and even speciation
(65). The IS200/IS605 family of MGEs spreads
through “peel-and-paste” transposition cata-
lyzed by the homodimeric transposase TnpA
interacting with terminal hairpins at the left
end (LE) and right end (RE) of the element.
The insertion sequence (IS) is excised from
single-stranded DNA (ssDNA) as a circular
product containing an RE-LE junction, which
serves as an intermediate for insertion into a
new ssDNA target site. IS605 elements addi-
tionally contain an RNA-guided TnpB nucle-

ase and a cognate wRNA that bias the selfish
inheritance of the transposable element (Fig.
4A) (66–69). The ability to generate newMGEs
could improve our understanding of their bi-
ological function and enable the design of more
effective genome engineering tools.
We fine-tuned Evo on 10,720 IS605 elements

and 219,866 IS200 elements in their natural se-
quence context (Fig. 4B and Materials and
methods). We next calculated the entropy of
the conditional probabilities at each position
across natural IS200/IS605 loci (fig. S18) and
observed a sharp and sustained increase in en-
tropy corresponding with the 3′ end of the ele-
ment in particular, indicating that Evo learned
a representation of the MGE boundaries. Be-
yond first-order positional statistics, we also
observed that the model learns pairwise rela-
tionships between positions in the sequence
using a “categorical Jacobian” analysis (70), in
which we vary the value of each position in
the input sequence and measure the resulting
changes in the model outputs at all positions.
We observed that the model uses information
from one end to specify the other end across a
distance of ~1 to 2 kb, reflecting the model’s
understanding of the tight evolutionary link-
age of the two terminal elements (fig. S19).
Using special prompt tokens, we used the

fine-tuned model to generate IS200 or IS605
elements (fig. S18A). TnpA and TnpB proteins
that were detected within these generated se-
quences varied widely in their distance from
the nearest examples in the training set (Fig.
4C), with consistently high ESMFold pLDDT
values for predicted structures that were >40
to 50% identity to the training set (fig. S18B)
and a sequence length distribution that closely
matched proteins in the training set (fig. S18C).
To select sequences for experimental valida-

tion, we filtered by similarity to natural systems
(ISSpn6, ISStin10, ISHp608, and ISDge10) as
well as TnpA protein–level and DNA sequence–
level features (fig. S20) and experimentally
tested 24 IS200-like and 24 IS605-like designs
in vitro. We assay for TnpA-mediated excision
and insertion by incubating TnpA protein pro-
duced through in vitro transcription-translation
with a ssDNA substrate containing the putative
left and right ends, followed by a polymerase
chain reaction (PCR) with outward-facing pri-
mers. If excision occurs, a band is produced from
the formation of the RE-LE junction. If the
donor contains other target sites and insertion
also occurs, bands are produced from the join-
ing of the two ssDNA substrates by the same
PCR reaction (Fig. 4D).
We observed that 11 out of 24 Evo-generated

IS200-like elements and 3 out of 24 Evo-
generated IS605-like elements demonstrated
evidence for both excision and insertion in
vitro (Fig. 4, E to J, and fig. S21). This activity
was also dependent on the presence of a pu-
tative catalytic tyrosine and on having a ssDNA

substrate instead of double-stranded DNA
(dsDNA), consistent with the known mech-
anism for IS200/IS605 TnpA (Fig. 4, F and I).
To identify the precise boundaries of each ele-
ment, we performed nanopore sequencing of
the PCR products (Fig. 4, G and J, and figs.
S22 and S23). As a control, we tested the nat-
ural IS200 element ISSpn6 and IS605 element
ISHp608, and in both cases, we successfully
detected the ISFinder-annotated boundaries
(71), additionally revealing that the ISSpn6
TnpA can also mobilize using additional left
and right ends within the locus (fig. S24). Three
of our generated elements also appeared to
mobilize using more than one left or right end
pair (figs. S23, S25, and S26). The functional
IS605-like elements, which contain putative
TnpB coding sequences, also contain sequences
with significant matches (cmsearch E value <
0.001) to a covariance model constructed from
knownwRNAs (Fig. 4E and fig. S26). As awhole,
the 14 active elements use a diverse set of hair-
pins (Fig. 4, E and H, and figs. S25 and S26) and
encode functional TnpA proteins with sequence
identity as lowas 67% to the fine-tuning database.
These generative results are notable given

that successful transposition requiresTnpApro-
teins that functionally dimerize, TnpA dimer
interactions with DNA hairpins in the LE and
RE, base pairing between the LE and RE hair-
pins and the target site, and strand cleavage
and exchange. Despite the complexity of this
mechanism,we observed a high design success
rate, nearing 50% for the IS200-like systems.
Generative design and diversification of this
functional class of MGEs could explore regimes
of high activity unconstrained by natural evo-
lutionary pressure on transposon fitness, ex-
panding our understanding of transposase
protein requirements and enabling biotech-
nological applications.

Learning gene essentiality with long
genomic context

Beyond the molecular or systems level, we de-
signed Evo to be capable of analyzing whole
genomes. We conducted a second stage of pre-
training in which Evo processed sequences
with 131,072-token context (Fig. 5A) that also
contained species-specific tokens. This stage
used data from the genome taxonomy data-
base (GTDB) and a subset of IMG/VR that
excludes eukaryotic viruses (Fig. 1C, fig. S1,
and Materials and methods). Evo maintains
single-nucleotide resolution at its 131,072 con-
text length, which is important because even a
single-nucleotide mutation in an essential gene
can be incompatible with life if it disrupts that
gene’s expression or function (72).
To this end, we evaluated whether Evo would

be sensitive to mutations in essential genes
solely based on small changes in a long ge-
nomic sequence.We conducted an experiment
in which we inserted premature stop codons
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Fig. 4. Fine-tuning on IS200/IS605 sequences enables generative design
of transposable biological systems. (A) IS200 and IS605 MGEs contain a
TnpA transposase and are flanked by left and right end terminal hairpins that
interact with the TnpA to accomplish transposition. IS605 MGEs additionally
encode a TnpB-wRNA complex that performs DNA cleavage. Our design task is to
produce sequences that contain these DNA, ncRNA, and protein components.
(B) We fine-tuned Evo, after its initial 8k pretraining phase, on natural sequences
containing IS200/IS605 systems. (C) Histograms representing the distribution
of the percentage identity of Evo-generated TnpA and TnpB proteins to their
best match in the fine-tuning set of natural TnpA and TnpB proteins. (D) Schematic
of the in vitro assay for evaluating designed TnpA activity on codesigned DNA
ends. Excision will produce a band corresponding to the formation of the
RE-LE junction in the resulting circular product, and (re-)insertion will produce

a band from the joining of two ssDNA substrates, both detectable by a single
PCR. (E) Schematic of the Evo-generated IS200-like system, ISEvo1, containing
element annotations and its relevant DNA and protein features. (F) A 2% agarose
gel with SYBR Gold showing that ISEvo1 TnpA functions in vitro on ssDNA
substrates, requiring the catalytically active tyrosine (Y124) and with substan-
tially reduced activity on dsDNA substrates. (G) Example reads from nanopore
sequencing of PCR products from the ISEvo1 TnpA in vitro assay. (H) Schematic
of the Evo-generated IS605-like system, ISEvo2, containing element annotations
and its relevant DNA, RNA, and protein features. (I) A 2% agarose gel with
SYBR Gold showing that ISEvo2 TnpA functions in vitro on ssDNA substrates,
requiring the catalytically active tyrosine (Y125) and with substantially reduced
activity on dsDNA substrates. (J) Example reads from nanopore sequencing
of PCR products from the ISEvo2 TnpA in vitro assay.
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at the beginning of each coding sequence in a
given organism’s genome and measured the
effects of these changes on Evo’s likelihood
with respect to the likelihood of the wild-type
sequence (Fig. 5B).When computing the changes
to the mutant versus wild-type sequences, we
evaluated Evo on the gene sequence alone
(“gene-only context”) or the gene sequencewith
lanking context up to a total of 8192 tokens
(“8k context”) or 66,000 tokens (“66k con-
text”) (Materials and methods). We hypothe-
sized that mutations to essential genes would
result in larger, more negative changes in log-
likelihood compared with mutations to non-
essential genes.
On a dataset of 56 whole-genome essential-

ity studies in bacteria from the DEG database
(73) and two whole-genome essentiality studies
in phage from Piya et al. (74), we observed that
the changes in Evo log-likelihood with 66k con-
text are significantly associated (Bonferroni-
corrected permutation-based P < 0.05) with
gene essentiality in 49 of 58 genomes. We
also observed that providing the model with
additional genomic context beyond the gene
sequence results in a substantial improve-
ment in performance, especially from gene-
only context to 8k context. From 8k to 66k
context, the average predictive performance
is comparable, although performance on the

lower range of examples does improve with
longer context (Fig. 5C and fig. S27, A and B).
For a few genomes, the zero-shot performance
with 66k context is notably strong, with an
AUROC of 0.90 on lambda phage essentiality
data (74) andanAUROCof0.84onPseudomonas
aeruginosa essentiality data (75) (Fig. 5D).
Evo likelihood changes are also indicative of

gene essentiality when using different in silico
mutagenesis strategies, such as varying the
number of stop codons inserted or deleting the
gene sequence entirely (fig. S27C and Materials
and methods), though we did not attempt an
exhaustive search of the best prompting strat-
egy for this task. GenSLM, a codon language
model that had mild predictive performance
of mutational effects on single-gene protein
function (Fig. 2B), did not demonstrate sensi-
tivity to gene essentiality (Fig. 5C).
As control analyses, we examined genome

position and sequence conservation. A gene’s
position in the genome showed no link to
essentiality (Fig. 5C). We observed that more
conserved sequences tended to be essential,
with an association strength similar to that
of Evowith gene-only context but weaker than
that of Evo with genomic sequence context
(Fig. 5C).
These results highlight the added value of

Evo’s ability to consider genomic context when

predicting gene essentiality. Together, these re-
sults demonstrate that Evo can learn how small
mutations affect fitness at a whole-organism
level across many bacterial and phage species,
without any explicit genome annotations, task-
specific training data, or functional labels. In
contrast to protein or codon language models,
Evo can learn how individual genes interact
with a broader genomic context.

Generating DNA sequences at genome scale

Given Evo’s generative capabilities, we were
interested in testing its generation quality at
long sequence lengths without additional fine-
tuning. We used Evo to sample 16 sequences
each containing ~1 Mb, representing more than
seven times themodel’s context length of 131 kb.
For comparison, the smallest “minimal” bac-
terial genomes are ~580 kb in length (76). We
prompted the model to generate bacterial ge-
nomes using the species-level tokens in the
training dataset (Fig. 6A). To evaluate how
closely our generated sequences resemble nat-
ural genomes, we used CheckM (77), a tool
originally designed to assess the quality of
bacterial DNA sequenced from nature. CheckM
computes various metrics, including coding
sequence density and the presence of highly
conserved prokaryotic marker genes. We used
these statistics to compare thekey characteristics
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Fig. 5. Evo learns mutational effects on organismal fitness across diverse
bacterial and phage genomes. (A) For genome-scale prediction and generation
tasks, we first pretrained Evo on sequences with 8192 tokens and then extended
its context window size in a second pretraining phase to sequences of 131,072
tokens. (B) We performed an in silico, genome-wide mutagenesis screen in which
we introduced premature stop codons at each coding sequence in a genome. We
computed the language model (LM) likelihood of the mutated gene sequence
plus some amount of additional genomic context (up to 66 kb). We then took the
ratio of this likelihood to the likelihood of the unmutated sequence. We tested
whether these likelihood ratios would be predictive of gene essentiality. (C) Violin
and strip plots of the distribution of the strength of gene essentiality prediction
across 58 studies (each dot corresponds to a different study), in which each
study conducted a genome-wide essentiality screen in a bacterial (N = 56)

or phage (N = 2) species. We measured predictive performance as the AUROC in
which the LM likelihood ratio is used to predict a binary label of “essential” or
“nonessential.” “Gene-only context” indicates that the model is provided with
only the gene sequence and no additional flanking genomic context. “8k context”
and “66k context” indicate that the LM is provided with the gene sequence
and flanking genomic context up to a total of 8192 or 65,536 tokens,
respectively. Evo has some predictive performance with gene-only context, has
vastly improved performance from gene-only to 8k context, and some outlier
improvements from 8k to 66k context. (D) Histograms representing the
distributions of the log of the likelihood ratios (“Evo score”) for the essential
genes (blue) and the nonessential genes (yellow) in two genomes: lambda phage
(top) and P. aeruginosa (bottom). These results are based on providing Evo
with 66k context.
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of our generated sequenceswith those of natural
genomes.
Notably, Evo generated sequences have nearly

the same coding densities as natural genomes,
and substantially higher than that of random
sequences (Fig. 6B). When visualized, both
natural and generated sequences display sim-
ilar patterns of coding organization (Fig. 6C),
with sequences in close proximity typically

found with the same strand orientation; in
bacteria, these closely linked groups of coding
sequences typically correspond to functional-
ly tied gene clusters or operons. When using
ESMFold to obtain protein structure predic-
tions corresponding to these coding sequences,
almost all showed predicted secondary struc-
ture and globular folds (Fig. 6, D and E, and fig.
S28). Many proteins also showed structural sim-

ilarity tonaturalproteins involved in fundamental
molecular functions as annotated by gene on-
tology (GO) terms (Fig. 6, D and E). Across all
our generated sequences representing ~16Mb,
Evowasalso able togenerate 128 tRNAsequences
containing anticodons that correspond to all
canonical amino acids (Fig. 6E).
We further observed that various genome-

wide sequence patterns including theGC content,

Fig. 6. Evo generates megabase-scale sequences with plausible genomic
architecture. (A) We prompted Evo with species-level tokens used during the
second pretraining stage. We use bacterial species prompts and generate
sequences of ~650 kb in length. (B) Histograms depicting the distribution of
coding density scores among 131-kb crops of sequences generated by Evo
(“Evo generated”), sequences from natural bacteria (“natural genomes”),
or sequences in which the four base pairs were sampled uniformly at random
(“random sequences”). (C) Arrow plots depicting the organization of coding
sequences on an example 131-kb sequence generated by Evo, derived from a
natural genome, or sampled randomly. Coding sequences are depicted as
arrows in which the horizontal length of the arrow corresponds to the genomic
interval and the direction of the arrow indicates the strand. The top and
bottom rows of arrows indicate the 5′-to-3′ and 3′-to-5′ strands, respectively,
and the Evo-generated sequence was designated as the 5′-to-3′ strand. Both

Evo-generated and natural genomes exhibit operon-like structure in which
clusters of colocated genes are on the same strand. (D and E) An ~1-Mb
generated sequence is represented as an arrow plot, as in (C). Below this arrow
plot are ESMFold structure predictions of all protein coding sequences from
100 through 1024 amino acids in length, as identified by Prodigal. Structure
predictions are aligned to natural proteins, which are then mapped to associated
GO molecular function terms (Materials and methods). The largest GO categories
are displayed as clusters alongside a large cluster containing all other proteins.
ATP, adenosine triphosphate. (F) Log2 of TUDs of Evo-generated versus
natural genomes for each species prompt. Statistics are the Pearson correlation
coefficient test. Shaded regions indicate a 95% confidence interval. (G) Hierarchical
clustering of Evo-generated and natural genomes based on Euclidean distances
of the TUDs. (H) Percent usage of each stop codon in all three reading frames of
Evo-generated, natural, and random ORFs.
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dinucleotide frequencies, and certain codon
usage patterns more closely resembled those of
natural genomes compared with random se-
quences (fig. S28, A to C). To assess the accuracy
of species-specific prompting,we calculated tetra-
nucleotide usage deviations (TUDs), a strong
indicatormetric of phylogenetic relatedness (78).
We found strong correlations between species-
specific generations and their corresponding
natural reference sequences, with TUDs suffi-
ciently accurate to reconstruct natural phy-
logenetic relationships among the generated
sequences (Fig. 6, F and G). We also examined
stop codon frequencies across reading frames,
a conserved genomic feature in prokaryotes
(79). TGA and TAA stop codons appearedmost
frequently, whereas TAG was least common,
consistent with previously observed patterns
in prokaryotic genomes (Fig. 6H) (80). By con-
trast, random sequences showed an unbiased
proportion of stop codons. These analyses col-
lectively demonstrate that Evo’s generated se-
quences capture multiple layers of genomic
signatures characteristic of natural prokary-
otic genomes.
However, there are characteristics of these

genomes that are unnatural. The generated
sequences do not contain many highly con-
served marker genes that typically indicate
complete genomes and, across the ~16 Mb of
sample sequence, Evo generated only three
rRNAs (81). Many of the protein structure
predictions are of low confidence, are biased
toward evolutionarily simpler a-helical second-
ary structures (82), and have limited structural
matches to any entry in a representative data-
base of naturally occurring proteins (fig. S28E).
These results suggest that Evo can generate

genome sequences containing plausible high-
level genomic organization at an unprecedented
scale without extensive prompt engineering or
fine-tuning. These samples represent a “blurry
image” of a genome that contains key charac-
teristics but lacks the finer-grained details typ-
ical of natural genomes. This is consistentwith
findings involving generative models in other
domains, such as natural language or image
generation. For example, directly sampling from
a large natural language model typically pro-
duces sequences that are grammatically cor-
rect yet locally biased toward simpler sentence
constructions and that are globally incoherent,
especially at long lengths. Promisingly, in these
domains, algorithmic techniques have emerged
to improve the quality of generations compared
with sampling from the pretrainedmodel alone
(83–85). The baseline generation quality ob-
served without any fine-tuning suggests that
Evo is also amenable to these techniques.

Discussion

Evo is a genomic foundationmodel trained on
hundreds of billions of DNA tokens across the
evolutionary diversity of prokaryotic life, ca-

pable of prediction and generation tasks at the
scale of individual molecules, molecular com-
plexes, systems, and evenwhole genomes. Based
on a state-of-the art hybridmodel architecture,
Evo enables single-nucleotide-resolution lan-
guage modeling at a context length of 131,072.
We conducted the first scaling laws analysis of
DNA pretraining across several architectures,
where we observed StripedHyena outperform-
ing several baseline architectures, including
Transformers. Evo accurately performed zero-
shot prediction across diverse fitness or ex-
pression prediction tasks on proteins, ncRNAs,
or regulatory DNA that matches or outper-
forms specialized models while also under-
standing how mutations to individual genes
can affect broader organismal fitness. As a
multimodal generative model, we use Evo to
generate CRISPR-Cas proteins and their non-
coding guide RNAs, multicomponent transpo-
sable systems, and megabase-long sequences
that recapitulate the architecture of real ge-
nomes. We experimentally validated the func-
tional activity of EvoCas9-1 and Evo-generated
IS200 and IS605 systems. Wemake open-access
code and models for Evo publicly available at
https://github.com/evo-design/evo.
A model capable of genome-scale design has

the potential to advance therapeutic discovery,
sustainability, and our understanding of fun-
damental biology but simultaneously raises
biosafety and ethical considerations. The Global
Alliance for Genomics and Health (GA4GH)
(86) has developed principles for the oversight
of genetic engineering technologies and could
provide a robust foundation for transparency,
accountability, and shared responsibility. Such
a framework is essential to foster international
cooperation that benefits all humanity. A pro-
active discussion involving the scientific com-
munity, security experts, and policy-makers is
imperative to prevent misuse and to promote
effective strategies for mitigating existing and
emerging threats. We open-source the model
to promote transparency and begin a dialogue
with the broader scientific community, andwe
apply the precaution of excluding eukaryotic
viruses from our pretraining dataset. We fur-
ther include an extended supplementary dis-
cussion on safety and ethical considerations
(see supplementary materials). Clear, com-
prehensive guidelines that delineate ethical
practices for the field are required for the re-
sponsible development and use of genome-
scale language models.
Despite the notable capabilities of this first-

generation DNA foundation model, a number
of technical limitations and challenges remain.
We pretrained Evo on a dataset of 300 billion
prokaryotic tokens, which represents a minis-
cule portion of petabytes of publicly available
genomic data. Because our model is trained
only on prokaryotic data, our ability to pre-
dict functional effects of mutations on human

protein fitness is limited. Natural language
models often struggle to maintain coherent
and diverse generation over long sequences,
and Evo can demonstrate similar properties.
For example, we observed that many CRISPR-
Cas generations had clearly problematic se-
quences, such as missing or truncated cas genes.
At the genome-scale, Evo generates megabase-
long sequences that demonstrate a high-level
understanding of genome organization, but it
struggles to include key marker genes, such as
full sets of rRNAs. Improvement on long-
range prediction or generation tasks will
require both methodological improvements
and biologically motivated problem selec-
tion and evaluation. These limitations mirror
the constraints of natural language models,
which have been improved over time with
increased scale, labeled data, prompt engi-
neering, and alignment with human prefer-
ences (39, 83–85, 87). We expect a similar
trajectory for models of DNA.
We expect that Evo will benefit from addi-

tional scale, longer context length, and more
diverse pretraining data. Given the success of
language model–guided directed evolution of
proteins (88, 89), genomic language models
may also help guide the directed evolution of
multigene systems. The coevolutionary informa-
tion contained in these models could improve
molecular structure prediction in a multigene
context (5, 47). With better conditioning or
prompt engineering, Evo could form the basis
of a next-generation sequence search algorithm
by enabling metagenomic mining at a rela-
tional or a semantic level rather than extract-
ing literal sequences from existing organisms.
The incorporation of eukaryotic genomes into
Evo will need to consider the far higher com-
plexity of these genomes and require substantial
resource investment in engineering, compute, and
safety-related model alignment. Combined with
advances in large-scale genome modification
(90), Evo expands the scope of biological engi-
neering anddesign to the scale ofwhole genomes.

Materials and methods
StripedHyena architecture

Evo is based on StripedHyena (34), a state-of-
the-art hybridmodel architecture for sequence
modeling. Evo comprises 32 blocks at a model
width of 4096 dimensions. Each block contains
a sequence mixing layer, tasked with process-
ing information along the sequence dimen-
sion, and a channel mixing layer, focused on
processing information along themodel width
dimension. In the sequencemixing layers, Evo
uses 29 hyena layers, interleaved with 3 ro-
tary (29) self-attention layers at equal inter-
vals. We parametrize convolutions in hyena
operators using the modal canonical form de-
scribed in reference (28). For the channel mix-
ing layers, Evo uses gated linear units (91, 92).
Evo further normalizes the inputs to each
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layer using root mean square layer normaliza-
tion (93).

Hyena layers

Hyena (34) is a sequence mixer implementing
an input-dependent (data-controlled) opera-
tor via a composition of short convolutions,
long convolutions and data-controlled gat-
ing (Fig. 1B). Hyena belongs to the class of
deep signal processing primitives (28, 34, 94),
designed for efficient, input-dependent com-
putation in large-scale sequencemodels. Input
dependence allows an architecture built with
deep signal processing layers to adapt such
computation based on the input, unlocking
in-context learning (95, 96). Hyena relies on
structured operators compatible with fast mul-
tiplication algorithms, which can be evaluated
in subquadratic time, e.g., via Fast Fourier
Transforms or parallel scans. The operators
are parametrized implicitly, i.e., by learning
a map from positional embeddings, or the in-
put, to the parameters of the operator itself.
Typical choices of implicit parametrizations
are linear projections, hypernetworks (34, 97)
or linear state-space models in modal or com-
panion form (27, 28, 98–100).

Self-attention layers

Self-attention is the core sequence mixing op-
erator of Transformer models. Self-attention
constructs the output sequence as a weighted
combination of the input elements, where the
weights themselves are input-dependent. Given
an input sequence, the forward pass of a self-
attention layer is

Q ;K;Vð Þ ↦ A Q;Kð ÞV
A Q ;Kð Þ ¼ softmax QKT

� �
where queriesQ ∈ ℝL�D, keysK ∈ ℝL�D, and
valuesV ∈ ℝL�D are obtained through a linear
transformation of an input matrixU ∈ ℝL�D,
e.g., V ¼ UWv, and L denotes the sequence
length and D denotes the hidden dimension.
The softmax is applied to rows of A. The query,
key, value terminology is borrowed from data-
bases, where keys are used to index stored
values. Conceptually, the values of the attention
matrix A(Q,K) measure the similarity between
queries and keys akin to matching queries to
keys in a database.

Positional embeddings

By itself, the self-attention operator does not
have any notion of the different positions of
the input embeddings in an input sequence.
For this reason, it is generally supplemented
with a positional encoding mechanism. The
attention layers of StripedHyena use a rotary
position embedding mechanism (RoPE) to
model relative positional information (29). Po-
sition information is encoded by rotating the
query and key token vectors of the attention

operator. Specifically, RoPE implements a ro-
tation to queries and keys, with the rotation
magnitude defined as a function of their re-
lative position in the sequence.
To extend the context window length from

8k to 131k during our second pretraining stage,
we apply linear position interpolation to extend
the rotary position embedding applied in the
first pretraining stage at 8k sequence length
[for details, see (19)]. Interpolating enables the
model to continue leveraging its learned rep-
resentations when applied to longer sequences
than it was originally trained on. We also tested
other position interpolation methods but found
that they performed slightly worse than linear
interpolation on our data.

Tokenization

In language modeling, tokens describe the
smallest unit of semantic information that is
used by a model to process language. For exam-
ple, tokens can indicate individual words of a
vocabulary or even lower-level semantic infor-
mation such as individual characters. Tokeni-
zation describes the process of mapping these
semantic language units, such aswords or char-
acters, to specific integer values, each indicat-
ing an entry in a lookup table. These integer
values aremapped by embedding layers to vec-
tors, which are then processed by themodel in
an end-to-end fashion. Evo tokenizes DNA se-
quences at single-nucleotide resolution, using
the UTF-8 encoding implemented in Python.
During pretraining, Evo uses an effective vocab-
ulary of four tokens, one per base, from a total
vocabulary of 512 characters, which allows for
vocabulary expansion during subsequent down-
stream tasks. We use the additional characters
to enable prompting with special tokens during
generation with fine-tuned models.

OpenGenome datasets

The OpenGenome pretraining dataset (table
S2) was compiled from three different sources:
(i) bacterial and archaeal genomes from the
Genome Taxonomy Database (GTDB) v214.1
(77), (ii) curated prokaryotic viruses from the
IMG/VR v4 database (36), and (iii) plasmid
sequences from the IMG/PR database (37). For
GTDB, representative genomes for each species
were retained to reduce data redundancy.
For IMG/PR, only one representative per plas-

mid taxonomicunit (PTU)waskept. For IMG/VR,
sequences were retained only if they were
labeled as “high-confidence” according to the
database metadata, and only one representa-
tive per viral operational taxonomic unit (vOTU)
was kept. These sequences were further curated
to remove potential eukaryotic viruses by keep-
ing only sequences whose assigned taxonomic
classification was found within a prokaryotic
host at least twice.Next, the remaining taxonomic
classifications were inspected and further filtered
to exclude all viruses assigned to any of 19 fam-

ilies (Adenoviridae, Caliciviridae, Coronaviridae,
Filoviridae, Flaviviridae, Hantaviridae, Hepad-
naviridae, Herpesviridae, Orthomyxoviridae,
Papillomaviridae, Paramyxoviridae, Picorna-
viridae, Poxviridae, Reoviridae, Retroviridae,
Rhabdoviridae, Circoviridae, Geminiviridae,
Picobirnaviridae) or 12 orders (Amarillovirales,
Durnavirales, Geplafuvirales, Herpesvirales,
Lefavirales, Ortervirales, Orthopolintovirales,
Piccovirales, Picornavirales, Priklausovirales,
Cirlivirales, and Mulpavirales). Next, viruses
with poor taxonomic specificity were excluded,
including those with no assigned realm at
all, and those only assigned up to the level of
r:Riboviria, r:Monodnaviria, k:Heunggongvirae,
k:Bamfordvirae, p:Preplasmiviricota, p:Cressdna-
viricota, p:Pisuviricota, or c:Tectiliviricetes.
The CRISPR-Cas and IS200/IS605 fine-tuning

datasets were compiled from a previously de-
scribed customdatabase gathered frommultiple
sources (101). Briefly, this custom database in-
cludes genomic and metagenomic sequence
data from NCBI RefSeq (102), UHGG (103),
JGI IMG (104), the Gut Phage Database (105),
the Human Gastrointestinal Bacteria Genome
Collection (106), MGnify (107), Youngblut et al.
animal gut metagenomes (108), MGRAST (109),
and Tara Oceans samples (110).
To compile the CRISPR-Cas genomic loci, this

custom database was searched using profile
HMMmodels and the HMMER software pack-
age to identify Cas9, Cas12, and Cas13 sequences
(111). Several pHMMs were collected from the
CRISPRCasTyper annotation tool (112), and a
recent computational survey of TnpB and
Cas12 (113). Custom Cas13 pHMMs that were
previously generated by our group were also
used (101). These models were searched against
our large custom database using hmmsearch
and the parameter “-Z 1000000.” All hits that
met E < 1 × 10−6 with at least one pHMMwere
kept. Only hits that were at least 300 amino
acids long and covered over 80%of the pHMM
were kept. For all hits to a given pHMM, only
proteins that were within the middle 99% of
the size distribution were kept. Corresponding
genetic loci were extracted from the database,
including 8192 nucleotides of flanking se-
quence on both the 5′ and 3′ ends of the Cas
effector CDS. The tool minced was used to iden-
tify CRISPR arrays in the flanking sequences
using the parameters “-minRL 18 -maxRL 50
-minSL 18 -maxRL 50.” Only loci with both a
predicted Cas effector and a CRISPR array
were retained. The final CRISPR-Cas loci were
extracted by first identifying the subsequence
that covered both the Cas effector and the
CRISPR array, and then including additional
flanking nucleotides on both sides up until
8192 were retained for fine-tuning purposes.
Only 1 locus per 90% identity Cas cluster was
retained, clustered using the MMseqs2 com-
mand “easy-cluster --cluster-reassign --cluster-
mode 0 --cov-mode 0 -c 0.7 --min-seq-id 0.9” (114).
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To compile the IS200/IS605 loci, this custom
database was searched using a Pfam Y1 HUH
Transposase pHMMmodel (Pfam ID: PF01797).
This pHMM identifies IS200/IS605 TnpA pro-
teins. All matches meeting E value < 1 × 10−6

that covered at least 80% of the pHMM and
were less than 400 amino acidswere kept. 8196
nucleotides of CDS-flanking sequence was then
extracted for each hit. Loci that also contained
TnpB coding sequences were identified using
previously compiled pHMMs (113), and a cus-
tom pHMM compiled using jackhmmer and
the ISDra2 TnpB as an initial query against the
MGnify protein database, followed by aMAFFT
alignment of hits and pHMMconstructionwith
HMMER (107, 111, 115). Hits that were between
250and650aminoacids in lengthwere retained,
and only loci where the distance between the
beginning and end of the TnpA and TnpB se-
quences was less than 2500 nucleotides were re-
tained. For TnpA-only loci, up to 300 nucleotides
of flanking sequence were added to either side
of the CDS. For TnpA+TnpB loci, up to 300 nu-
cleotides were added to the TnpA side of the
IS200/IS605 element, while 600 nucleotides
were added to the TnpB side (to account for the
presence of an wRNA). Only 1 locus per 90%
identity TnpA cluster was retained.

Training procedure

We pretrain Evo in two stages, first with a
context size of 8k tokens, followed by a second
stage where we increase the context size to
131k tokens. Multistage sequence length pre-
training has been shown to reduce the overall
number of compute hours required to train
long contextmodels (116). The pretrainingwas
distributed across GPUs using pipeline paral-
lel with 2 stages (pipeline parallel value of 2),
where each stage processes a part of the train-
ing pipeline (depthwise). This reduces themem-
ory footprint while allowing us to maximize
throughput during training. In total, we trained
Evo in stage 1 on 64 NVIDIA H100 GPUs for
2 weeks and on 128 NVIDIA A100 GPUs in
stage 2 for an additional 2 weeks. In total, Evo
was trained on ~340B tokens, using ~2 × 1022

FLOPs. Because OpenGenome contains 300B
tokens, this equates to 1.13 epochs, where data-
loading beyond 300B tokens would consist of
repeated tokens that are uniformly randomly
sampled in a different order than in the first
epoch. For specific generation tasks, we further
fine-tuned Evo, as described in the following
sections. We also report long context perplexity
scaling of Evo 131k in fig. S2. Additional details
on training settings are provided in table S1.

Dataloading

We use sequence packing to generate training
samples. A sequence of the specified context
length is sampled at random from the entire
training dataset, where the sampling is done
without replacement over an entire training

epoch. Because someDNAsequences are shorter
than the context length,multipleDNA sequences
can be appended until the context length (8k or
131k) is reached; likewise, because some DNA
sequences are longer than the context length,
a training sample could consist of a genomic
subsequence. Individual DNA sequences at the
level of assembled contigs are separated by end-
of-sequence (EOS) tokens. Depending on the
dataset or task, we additionally prepend special
token(s) to condition themodel, for example, to
steer its generations through prompting.

Hyperparameter tuning and direct
model comparisons

Before training Evo, we carried out hyperparame-
ter tuning on partially trained 7B Transformer++
models and compared to similarly sized Hyena
and StripedHyenamodels. We swept batch size,
learning rate and other architectural details. Even
when controlling for training iterations instead
of compute (FLOPs),Transformer++performance
is substantially worse than StripedHyena (fig. S4).
Outof all thebaselines,we find that StripedHyena
achieves the overall lowest perplexity at the 7B
scale, consistent with the scaling rates pre-
sented in Fig. 1G.

Scaling laws

We compare different classes of architectures
via a compute-optimal protocol, aimed at eval-
uating results on the compute-optimal fron-
tier. Compute-optimal analysis studies the best
performance of a pretraining run given a com-
pute budget, typically indicated in floating
point operations (FLOPs), and achieved by
optimally allocating portions of the compute
budget to model size and dataset size. Archi-
tecture types differ in compute efficiency, as
well as how they allocate this compute budget.
We started by tuning hyperparameters such

as learning rate and batch size for Transformer++
with a grid search, thenused the same values for
all architectures except in settings where numer-
ical instability was observed. To address instabil-
ity, we lowered the learning rate gradually and
repeated the experiment until convergence. In all
experiments,we trainedmodelswith8192 tokens
in context length. For each compute budget de-
finedby a total FLOPcount,we varied themodel
sizes (6 million to 1 billion parameters) and the
number of tokens trained. To measure model
performance,weuse the perplexitymetric, which
indicates how well an autoregressive model per-
forms at predicting the next token of a sequence
and is highly correlated with performance on
downstream tasks. A lower perplexity value
indicates better performance.

Scaling laws procedure

Weprovide a summary of the steps involved in
our scaling laws analysis. Quantifying scaling
rates allows us to predict performance as model
size, dataset size, and compute grow.

1) Define a set of compute budgets to study.
We use 8 × 1018, 2 × 1019, 4 × 1019, and 8 ×
1019 FLOPs.
2) Calculate the FLOPs (floating point oper-

ations) required to process a fixed input size
for the model architecture of interest (i.e., the
“cost” of using the model).
3) Identify the model’s compute-optimal al-

location for each compute budget: (a) Select a
wide range of possible model sizes and cal-
culate for each model size the corresponding
number of tokens that need to be processed to
reach the compute budget. Other hyperpara-
meters are chosen according to table S3. We
generally observe minor changes to model to-
pology (depth, width) to only minimally affect
perplexity, aligning our results with the find-
ings presented by (39) for Transformers. (b)
Train a model of each size and record its per-
formance (e.g., in terms of perplexity). (c) Iden-
tify the optimal compute allocation: Following
prior analysis, we fit a second-order polynomial
as a function from (log)model size to perplexity,
and extract obtained the compute-optimal point
as its minimum. The compute-optimal point
identifies theoptimal allocationofmodel size and
training tokens at the given compute budget.
After deriving the compute-optimal scaling

rates (Fig. 1G), we compare architectures and
compute optimal allocationof tokens andmodel
size (fig. S5). In fig. S3, we also show rates for
compute-suboptimal model sizes by architec-
ture.We quantify the effect on perplexity scaling
caused by a suboptimal allocation of compute
budget tomodel or dataset size (e.g., training a
smaller model for more tokens). We estimate
the compute-optimal model size for each com-
pute budget, then reduce it by a percentage (the
offset). The corresponding perplexity is obtained
via the IsoFLOP curves (Fig. 1F). Transformer++
perplexity scaling rapidly degrades outside the
compute-optimal frontier, in contrast to Hyena
and StripedHyena. Architecture details of mod-
els trained for our scaling law analysis provided
in table S3.

Transformer++

We use a modern decoder-only Transformer
architecture with rotary position embeddings
(29), pre-normwith root mean square layer nor-
malization, and SwiGLU as channel mixer. The
innerwidthof theSwiGLU is4/3 themodelwidth.
We experimented with grouped-query attention
(GQA) (117) and found minimal differences in
final loss, suggesting the technique may be suited
to DNA sequence modeling, to further reduce
memory footprint during inference. All scaling
results with Transformer++ do not use GQA.

Hyena

The Hyena baseline is designed with the same
architecture improvements applied to the
Transformer++ model. We replace all multi-
headed self-attention layers with hyena layers
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and use amodal canonical parametrization for
the long convolution, with state dimension 8.

Mamba

We use the implementation of Mamba as pro-
vided by the public repository (https://github.
com/state-spaces/mamba).

Generating DNA sequences with Evo

We sample sequences from Evo using standard
top-k and temperature-based methods for auto-
regressive models. Evo benefits from the fast
recurrent mode of hyena layers, enabling lower
latency andmemory cost (24, 28). In particular,
we use the recurrent form of the modal cano-
nical form as shown in (28), first processing the
prompt with a Fast Fourier Transform modi-
fied to return output and state. We use a cache
for the states of short convolutions. Evo can
generate sequences of up to 650k nucleotides
on a single 80GB GPU, in contrast to other
long context methods for dense Transformers
requiring a larger number of nodes. We use
standard kv-caching for rotary attention layers
in StripedHyena.

Controllable generation

We follow standard language model prompt-
ing techniques that condition generation on a
given prefix. For class-conditional generation
we prompt with a single token, representing
the desired class, or genomic sequence type (e.g.,
CRISPR-Cas system, IS200/605). The model
can also be steered by prompting on desired
DNA subsequences.

Protein function prediction

We used DMS datasets to benchmark protein
and nucleotide language models in their abil-
ity to predict mutational effects on protein
function. In all cases, we used the nucleotide
sequences reported by the original study au-
thors. We limited our analysis to prokaryotic
and human proteins, where notably the Evo
training dataset only contains prokaryotic pro-
tein sequences.
To compile the nucleotide information from

prokaryoticDMSstudies,weusedall thedatasets
listed as “prokaryote” in the ProteinGym bench-
mark for which we could also find nucleotide-
level information reported by the original study
authors. This resulted in nine studies: a b-
lactamase DMS by Firnberg et al. (118), a b-
lactamase DMS by Jacquier et al. (119), a CcdB
DMS (120), a multiprotein thermostability data-
set (121), an IF-1 DMS (122), an Rnc DMS (123),
an HaeIII DMS (124), a VIM-2 DMS (125), and
an APH(3′)II DMS (126).
To compile the nucleotide information from

human DMS studies, we narrowed the scope
of the set of datasets used in our human bench-
mark to the human datasets used in reference
(45) to benchmark mutational effect predic-
tors. We also limited our analysis to studies

where we could also find nucleotide-level in-
formation reported by the original study au-
thors. This resulted in six studies: a CBS DMS
(127), a GDI1 DMS (128), a PDE3ADMS (129), a
P53 DMS by Kotler et al. (130), a P53 DMS by
Giacomelli et al. (131), and a BRCA1DMS (132).
We compared Evo (pretrained with 8k con-

text) to two genomic DNA language models:
GenSLM2.5B, whichwas trainedwith a codon
vocabulary on sets of genes from prokaryotic
organisms (15) and Nucleotide Transformer
2B5_multi_species, which was trained with a
6-mer nucleotide vocabulary on genome se-
quences from prokaryotic and eukaryotic species
(16). We also compared Evo to several protein
language models trained on nonredundant,
generic corpora of protein sequences: CARP
640M (46), ESM-1v (41), ESM-2 650M, ESM-2 3B
(47), ProGen2 large, and ProGen 2 xlarge (48).
For studies that provide models with multiple
parameter sizes, we selected the largest size on
which we could perform inference with an
80 GBNVIDIAH100GPU on sequences from all
our benchmarked studies without exceeding
GPU memory. We also included ESM-2 650M
and ProGen2 large given that these models
have sometimes shown better performance at
function prediction than larger versions of
these models (44).
To compare nucleotide and protein language

models, we used all unique nucleotide sequences
and their corresponding fitness values as re-
ported by the original studies. Occasionally,
we observed that the fitness values reported
for nucleotide sequences differed from fitness
values reported for protein sequences; in such
cases, we used the fitness values reported for
nucleotide sequences and evaluated the protein
language models using the translated sequence.
In cases where there are multiple nucleotide
sequences for a single protein sequence due to
different codon usage, the nucleotide language
modelswere evaluated on each unique nucleo-
tide sequence and the protein language models
were evaluated on the coding sequence corre-
sponding to each unique nucleotide sequence;
this means that a protein language model
could have been evaluated on the same pro-
tein sequencemultiple times for a given study.
Some studies report fitness values for muta-
tions that involve stop codons; in such cases,
we evaluated the nucleotide language model
on the sequence containing the stop codon
and excluded these examples from the protein
language model benchmark.
We computed the Spearman correlation be-

tween the experimental fitness values and the
sequence likelihood (for autoregressive language
models) or the sequence pseudolikelihood (for
masked language models). When using Evo
sequence likelihoods to score sequences, we also
prepend the EOS token (used in the pretraining
data to delimit different sequences) to the full
sequence, which we find empirically to boost

zero-shot performance. We assessed statistical
significance of the Spearman correlation coef-
ficient under a null hypothesis that the cor-
relation coefficient is drawn from a t-distribution
withN − 2 degrees of freedom, whereN is the
number of samples over which we compute
the correlation. We used this null distribution
to compute a P value based on the observed
correlation. We used the scipy Python library
(https://scipy.org/) to compute these values.

ncRNA function prediction

We used DMS datasets to benchmark protein
and nucleotide language models based on
their ability to predict mutational effects on
ncRNA function. Given that no well-established
benchmark datasets exist for ncRNA function
prediction, we curated the literature for exam-
ples of ncRNA mutational scanning experi-
ments. We obtained the following datasets: a
ribozymeDMS by Kobori et al. (133), a ribozyme
DMS by Andreasson et al. (134), a tRNADMS by
Domingo et al. (135), a tRNA DMS by Guy et al.
(136), a ribozyme DMS by Hayden et al. (137), a
ribozyme DMS by Pitt et al. (138), and a rRNA
mutagenesis study by Zhang et al. (51).
We compared Evo (pretrained with 8k con-

text) to the nucleotide language models de-
scribed above as well as RNA-FM, which was
trained on a single-nucleotide vocabulary on
short ncRNA sequences (50). Like the meth-
ods applied to protein coding sequences above,
we compiled experimental fitness values for each
ncRNA variant. We computed the Spearman
correlation between the experimental fitness
values and the sequence likelihood (for autor-
egressive language models) or the sequence
pseudolikelihood (for masked language mod-
els).When scoring sequenceswith Evo sequence
likelihood, we also prepend the EOS token to
each sequence. Correlation coefficients and
associated P values were computed as described
above.

Gene expression prediction from
regulatory DNA

From LaFleur et al. (52), we obtained a dataset
of 5193 promoter sequences that we randomly
split into 4673 promoters in the training data-
set and 520 in the validation dataset following
the train-validation split sizes used in the orig-
inal study.We also obtained another 5391 pro-
moter sequences from the same study, which
we used as a second validation dataset. We
also obtained 4350 promoter sequences from
Hossain et al. (54), 10,898 promoter sequences
from Urtecho et al. (53), and 1493 promoter
sequences fromYu et al. (55), whichwe used as
held-out test sets. The datasets were further
processed to remove the background DNA
sequence by identifying the subsequence with
the maximum predicted transcription initia-
tion rate using the method of LaFleur et al.
(52). We also obtained a dataset of 12,243
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promoter-RBS sequences from Kosuri et al.
(56), which we used as an additional test set.
All promoter sequences had associated ac-
tivity labels related to gene expression and
the data fromKosuri et al. (56) quantifies both
mRNA and protein expression. The supervised
tasks described below were all trained only on
data generated by LaFleur et al. (52) and then
evaluated based on their ability to make pre-
dictions on data from other studies.
For the promoter activity prediction tasks,

we computed the predictive performance of pro-
moter GC content and the zero-shot sequence
likelihoods from Evo and from GenSLM on
the four test datasets.When scoring sequences
with Evo sequence likelihood, we prepended
the EOS token to each sequence.We evaluated
the performance of Promoter Calculator (52)
on the four test datasets, using the minimum
predicted dG_total across the forward sequence
as the prediction score.
We additionally trained supervised models

on the training set of 4673 promoters and as-
sociated activity values, using the two valida-
tion datasets described above to guide model
development. These supervised models used
either one-hot-encoded sequence embeddings or
neural embeddings from Evo. The neural em-
beddings leveraged the output of the last hidden
hyena layer, which takes the form of a matrix
with a dimension of the sequence length × the
hidden dimension (4096). On these embed-
dings, we trained either a ridge regression
model or a convolutional neural network (CNN).
To implement ridge regression, we used the
RidgeCV module from scikit-learn with default
values, which identifies the a hyperparameter
used to weight the ‘2-regularization term. As
input features for ridge regression, we addi-
tionally averaged the Evo embedding over the
sequence dimension to produce an embedding
vector of length 4096 for each sequence
The CNN consists of two convolutional lay-

ers, each followed by a ReLU activation func-
tion. The first convolutional layer starts with an
input embedding (where the sequence dimen-
sion was suffix-padded with zeros up to length
256) with 4096 channels, using a kernel size of
8 and a stride of 1, with “same” padding to
preserve the input sequence length. The second
convolutional layer takes the output from the
first layer and applies similar operations. Follow-
ing the convolutional layers, a max pooling layer
with a kernel size of 7 and a stride of 1 is applied,
with padding adjusted tomaintain the sequence
length. The pooled output is then flattened into
a two-dimensional tensor, which is passed
through a fully connected layer that reduces the
data to 128 channels. A final fully connected
layer further reduces the data to a single output.
The forward pass through the network involves
applying the ReLU activation after each convo-
lutional and fully connected layer (except for
the final output layer). The model was trained

for 10 epochs with the Adam optimizer, a learn-
ing rate of 0.0001, b1 = 0.9, and b2 = 0.999.
For the protein expression prediction task,

we used the data linking RBS sequences to
protein expression from Kosuri et al. (56). We
evaluated the zero-shot predictive performance
of the sequence likelihoods from Evo when
only providing the model with the sequence
of the promoter, the sequence of the RBS, or
the sequence of the promoter-RBS pair. When
scoring sequences with Evo sequence likeli-
hood, we also prepend the EOS token to each
sequence. We also evaluated the predictive per-
formance of the GC content of the promoter-
RBS concatenated sequence and the zero-shot
likelihoods from GenSLM. We also evaluated
the performance of RBS Calculator (57, 58) by
providing the online webtool (https://salislab.
net/software/predict_rbs_calculator) with a sim-
ulated mRNA sequence created by concate-
nating the RBS sequence and the sequence
of sfGFP used by Kosuri et al. (56). To ensure
that the Spearman correlation is comparable
across these settings, we computed the correla-
tion over all 12,243 examples (which involves
duplicating sequences in the promoter-alone or
RBS-alone settings).

CRISPR-Cas fine-tuning and generation

To generate CRISPR-Cas systems, we fine-tuned
Evo by continuing to train the 8k-context pre-
trained model on a dataset of CRISPR-Cas se-
quences, whichwas curated as described above.
We retainedmost of the hyperparameters used
during pretraining but set the batch size to
524,288 tokens and an initial learning rate of
0.00009698, which was the learning rate at the
final step of pretraining. During fine-tuning, we
prepended a single class token corresponding to
the type of Cas protein (Cas9, Cas12, or Cas13),
which was identified as described in the Open-
Genome datasets section; this class token was
then followed by the nucleotide sequence. We
also modified the dataloader such that each
sample provided to the model during training
would begin with the first token of the CRISPR-
Cas sequence and, if a sequence was shorter
than the context length,wepadded the sequence
to the remaining context (where padding did
not contribute to the loss computation). This
ensured that each training sample would cor-
respond to a single CRISPR-Cas sequence. We
fine-tuned the model for ~10 epochs.
We prompted the model with a given class

token and one additional character for each
sequence generation. For example, to prompt
for Cas9 sequences, we used either “``” or “`A”
as the Cas9 prompt, since we found that, in
some instances, adding an additional ran-
dom nucleotide character would improve the
quality of generations. We performed standard
temperature-based and top-k autoregressive
sampling (139). In our generations, we per-
formed an exhaustive sweep consisting of

temperatures of 0.1, 0.3, 0.5 and top-k values
of 2 and 4. All sampled sequences were then
combined and used for downstream extrac-
tion and analysis of candidate CRISPR systems.

CRISPR-Cas sampling evaluation

The in silico Cas evaluation pipeline consisted
of an initial open reading frame (ORF) search
using Prodigal (140) and subsequent profiling
of the extracted ORFs using hidden markov
model (HMM) profiles for each Cas subtype.
Sampled sequences with a positive pHMM hit
with an E value under 1 × 10−3 and a sequence
length above a given threshold were further
analyzed using the MinCED package to identify
possible CRISPR arrays (141). Generations with
Cas ORFs and CRISPR arrays were aligned
against Cas ORF sequences in the training
data with MMSeqs2 to identify the closest
sequences in the training data in sequence
identity (114). We then performed MAFFT
alignments with nearest hits to recompute
alignments. MAFFT alignments were trimmed
to 80% of the full alignment length centered
at the middle of the alignment and end-gaps
were removed before determining an estimate
for percent identity to the closest item in the
training data (115). To assess generation qual-
ity, we computed a “degeneracy score” as the
percent coverage of a sequence by any repet-
itive substring longer than a cutoff value. For
example, the degeneracy score of “ATAGAAAA-
AATAGGGGGAGA” with a cutoff of 4 would
be 0.55.
To select candidates for experimental vali-

dation, Cas9 generations with an ORF se-
quence identity higher than 90% to a training
sequence were first filtered out. Remaining
generations were then scored based on the
distribution of mismatches in the pairwise
alignments between the candidate sequence
and its closest hit in the training dataset.
Sequences with alignments containing an
even distribution of mismatches across the
ORF sequence were scored highly and those
with an uneven distribution (e.g., concen-
tration of mismatches or gaps at the N and C
termini) were down-weighted. The Cas9 ORFs
from the top-ranking 2000 generations were
folded with AlphaFold2 (5). From the pre-
dicted structures, generations were filtered
based on pLDDT, radius of gyration, the pres-
ence of a detected tracrRNA sequence, and the
presence of RuvC and HNH domains in the
Cas9 ORF. The Biotite package was used to cal-
culate radius of gyration (142). CRISPRtracrRNA
was used to extract potential tracrRNA se-
quences from candidate generations and co-
foldedwith the extracted crRNA sequence using
RNAmultifold (143, 144). The final 11 Evo-
generated Cas9 candidates were selected from
this subset through manual inspection of pre-
dicted Cas9 structure and predicted sgRNA
secondary structure.
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CRISPR-Cas in vitro cleavage
For an initial screen of 11 selected Cas9 can-
didates, we expressed the protein and sgRNA
in vitro using the PURExpress (IVTT) kit (NEB
E6800S) and the HiScribe T7 High Yield RNA
Synthesis (IVT) kit (NEB E2050S), respectively,
following the manufacturer’s recommendations.
The sgRNA IVT product was column-purified
using the 500 mg Monarch RNA Cleanup kit
(NEB T2050L) before use; the in vitro expressed
protein was not purified before use. The IVT
and IVTT products were performed in 20 mL
reactions with 2 mL of expressed protein, 2 mL
of gRNA, 2 mL of DNA target at a final con-
centration of 1 nM, and 2 mL of NEBuffer r3.1
(NEB B6003S) at a final concentration of 1X.
Cleavage reactions were incubated at 37°C for
20 hours and quenched with a final concentra-
tion of 50 mM EDTA (Invitrogen no. 15575020)
followed by 2 mL of RNase A treatment (NEB
T3018L) for 30 min at 37°C and 2 mL of Pro-
teinase K treatment (NEB P8107S) for 15 min
at 65°C. Cleavage products were then column-
purified using a QIAquick PCR Purification kit
(Qiagen no. 28104) and stored at 4°C before
performing gel electrophoresis on Novex 4 to
12% TBE gels (Invitrogen EC62352BOX) at a
constant voltage of 200 V. Gels were stained
with SYBR Gold Nucleic Acid Gel Stain for 5 min
at a 1X concentration (Invitrogen S11494).
SpCas9 and EvoCas9-1 was recombinantly ex-

pressed in the E. coli strain OverExpress C43(DE3)
(Sigma Aldrich CMC0019) and purified via His-
tag and size-exclusion chromatography using
the procedure described in the section “CRISPR-
Cas recombinant expression and purification.”
2 mL of commercially available SpCas9 (NEB
M0386T), purified SpCas9, or purified EvoCas9-1
were incubated with 2 mL of either a targeting
or nontargeting gRNA and 2 mL of aDNA target
at a 10:10:1 molar ratio of Cas9:sgRNA:target. A
final concentration of 1 nM was used for the
target and final concentrations of 10 nM for
both the Cas9 protein and sgRNA. Cleavage
reactions were performed in 20 mL volumes
with 2 mL of NEBuffer r3.1 (NEB B6003S) used
at a final concentration of 1X. Reactions were
incubated at 37°C for up to 12 hours with
timepoints collected at 5 min, 15 min, 1 hour,
3 hours, and 12 hours. Separate and indepen-
dent reactions were used for each timepoint
and condition and quenched with a final con-
centration of 50 mM EDTA (Invitrogen no.
15575020) before treating with 2 mL of RNase
A (NEB T3018L) at 37°C for 10min and 2 mL of
Proteinase K (NEB P8107S) at 65°C for 15 min.
Cleavage products were column-purified using
a QIAquick PCR Purification kit (Qiagen no.
28104) before performing gel electrophore-
sis on a Novex 4 to 12% TBE gel (Invitrogen
EC62352BOX) at a constant voltage of 200 V.
Gels were stained with SYBR Gold Nucleic
Acid Gel Stain for 5 min at a 1X concentration
(Invitrogen S11494).

CRISPR-Cas recombinant expression
and purification
The sequence encoding the protein of interest
was subcloned into a protein expression vector
containing an N-terminal 8xHis tag followed
by a TEV protease cleavage site using Gibson
assembly. The protein was expressed in E. coli
strain OverExpressC43(DE3) (MilliporeSigma)
grown in Terrific Broth at 18°C for 16 hours
after induction with 0.4 mM IPTG. The pro-
tein was purified by sequential affinity and size
exclusion chromatography steps. Cells were
centrifuged at 4000 ×g, 4°C for 15 min and
resuspended in lysis buffer (50mM Tris–HCl
pH 7.5, 0.5 M NaCl, 2 mM MgCl2, 10 mM
imidazole, 10% glycerol) supplemented with
EDTA-free protease inhibitor tablets (Roche)
and 1 mg/mL lysozyme (ThermoFisher). Cell
suspensions were then disrupted using a
sonicator (Fisher Scientific). Crude lysate was
subsequently ultracentrifuged at 40,000 ×g, 4°C
for 45 min using a 70Ti rotor in a XE-90 ultra-
centrifuge (Beckman Coulter). Clarified lysate
was then filtered through a 0.22 mm filter and
loaded onto a 5 mL HisTrapFF column (Cytiva)
using a peristaltic pump.
After the entire volume of the clarified lysate

was flowed through the HisTrapFF affinity col-
umn, the column was washed extensively with
Wash Buffer (50 mM Tris–HCl pH 7.5, 0.5 M
NaCl, 30 mM imidazole, and 10% glycerol). The
HisTrapFF column was then connected to an
AktaPure system (Cytiva) and eluted using a
linear gradient of Elution Buffer (50mM Tris–
HCl pH 7.5, 0.5 M NaCl, 0.5 M imidazole, and
10% glycerol) in 1.5 mL fractions. Fractions
corresponding to the peak identified to con-
tain the protein of interest were pooled and
concentrated using an Amicon 30 kDaMWCO
filter (MilliporeSigma) before overnight cleav-
age of the 8xHis tag using TEV protease. Fol-
lowing TEV protease cleavage, the solution was
applied to a second HisTrapFF column to re-
move the cleaved tag from the preparation. The
column was washed with 15 mL Wash Buffer
and the flow through was collected for con-
centration using an Amicon 30 kDa MWCO
filter (MilliporeSigma). The concentrated pro-
tein was then applied to a Superdex200 10/
300 column for purification by size exclusion
chromatography, with an isocratic elution pro-
gram using SEC Buffer (20 mM Tris–HCl pH
7.5, 0.5 M NaCl, and 1 mMDTT, 10% glycerol).
Eluted protein was concentrated again using an
Amicon 30 kDa MWCO filter (MilliporeSigma),
flash frozen in liquidnitrogenandstoredat−80°C.

IS200/IS605 fine-tuning and generation

To generate IS200 and IS605 systems, we fine-
tuned Evo by continuing to train the 8k-context
pretrained model on a dataset of IS200/IS605
sequences, which was curated as described
above. We retained most of the hyperpara-
meters used during pretraining but set the

batch size to 524,288 tokens and an initial
learning rate of 0.00009698, which was the
learning rate at the final step of pretraining.
During pretraining, we prepended a start token
to each sequence labeling whether the system
corresponded to an IS200 or an IS605 system.
We used the token corresponding to the char-
acter “~” as the IS200 prompt and the token
corresponding to the character “#” as the IS605
prompt. We also modified the data loader such
that each sample provided to the model during
training would begin with the first token of
the IS200/IS605 sequence and, if a sequence
was shorter than the context length, we padded
the sequence to the remaining context (where
padding did not contribute to the loss com-
putation), similar to the strategy described for
CRISPR-Cas9 systems above.We fine-tuned the
model for ~10 epochs.
Weprompted themodelwitha special prompt-

ing token for each sequence generation. We
performed standard temperature-based and
top-k autoregressive sampling (139). In our
generations, we performed an exhaustive sweep
consisting of temperatures of 0.1, 0.3, 0.5, 0.7,
0.9, 1.0, and 1.3, and top-k values of 2 and 4.
Sampled sequences were further processed by
splitting on the first whitespace character, keep-
ing the first non-whitespace sequence, and only
keeping generated sequences that were com-
posed entirely of valid nucleotides.
We analyzed generated sequences using Pro-

digal to identify coding sequences and proteins
(140), followed by hmmsearch (-Z 1000000)
using pHMMs to identify TnpA and TnpB
sequences (111), and cmsearch (-Z 4) using co-
variance models developed in a previous pub-
lication (66) to identify candidate wRNAs (145).
Candidate TnpA sequences were kept if they
hadanEvalue<1× 10−3 to thepHMMand if they
covered at least 50% of the pHMM. Candidate
TnpBsequenceswerekept if theyhadanEvalue<
1 × 10−3 to at least one pHMM, if they covered
at least 50% of the pHMM, and if they were be-
tween 300 and 600 amino acids in length.
Predicted TnpA and TnpB protein sequences

were aligned back to proteins in the training
set usingMMseqs2 (114). The top three hits for
each protein were extracted and separately
aligned using the MAFFT default algorithm to
estimate the amino acid identity across the full
lengths of the two sequences (115). To account
for different start codons and to generate amore
conservative percentage identity estimate, these
alignments were trimmed to themiddle 80% of
each sequence, end gapswere trimmed, and the
amino acid percent identity was recalculated,
which we called a “trimmed percent identity.”
TnpA and TnpB protein sequences were

binned by distance from the training set in 9
equal width bins from 10% to 100% trimmed
percent identity. 200 proteins were randomly
selected from each bin for TnpA proteins that
appeared in the absence of a TnpB protein
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(IS200-like), TnpA proteins that appeared with
a TnpB protein (IS605-like), and TnpB proteins
that appearedwith a TnpAprotein (IS605-like).
ESMFold was used to fold all 5400 proteins,
with TnpA protein sequences folded as dimers
with a glycine pseudo-linker of length 100. The
mean backbone atom pLDDT was calculated
and reported as a measurement of ESMFold
prediction confidence. Example TnpA andTnpB
proteins were aligned to the 2VIC and 8BF8
Protein Data Bank (PDB) structures, respec-
tively, using the US-align tool (146), right-end
and left-end DNA sequences from PDB struc-
tures 2VIC and 2VHG were overlayed on the
aligned structure, and structureswere visualized
in PyMOL (147). RNAfold from the ViennaRNA
package was used to fold the predicted wRNA
with default parameters (148, 149). Visualiza-
tions of wRNAs were drawn using R2R (150).
Visualizations of ISEvo1 TnpA and TnpB were
also computed using AlphaFold3 by uploading
sequences to the AlphaFold Server (64).
Evowas also used to calculate the entropy of

the conditional probabilities at each position
in each sequence with the pertinent special
token prepended. For example, the entropy at
position i was calculated using the likelihoods
p xi x1;…; xi�1j Þð over the entire vocabulary. We
then visualized these entropies alongside the
annotated sequence positions for several canon-
ical IS200/IS605 systems and summarized the
average entropy values within 250 bp of TnpA
and TnpB coding sequences.

IS200/IS605 categorical Jacobian analysis

We computed the “categorical Jacobian”matrix
on a sequence of nucleotides based on a proce-
dure introducedbyZhang et al. (70) and clarified
in the accompanying code at the GitHub repo-
sitory (https://github.com/zzhangzzhang/pLMs-
interpretability). To summarize this procedure,
letx ¼ x1; x2;…; xLð Þ, xi ∈ X denoteasequence
of length L where in our study we define
X ¼ “A”; “C”; “G”; “T”f g to be a nucleotide vo-
cabulary. Let f :XL → ℝL� Xj j denote the func-
tion for computing the language-model logits
(where a softmax function computed over the
logits for a given position corresponds to the
language-model likelihoods for that position)
given an input sequence x.
Now we define a sequence x x̂ i½ � ¼ x1;…;ð

x̂ i;…; xLÞas the sequence xmutated to x̂ i ∈ X
at position i ∈ L½ �, where [L] is defined as the
set {1, 2,…,L}.Wealsodefineg x; x̂ i; ið Þ ¼ f xð Þ�
f x x̂ i½ �ð Þ where g:XL �X � L½ � → ℝL� Xj j is a
function that computes the difference in logits
between the original sequence x and the mu-
tated sequence x x̂ i½ �.
The “categorical Jacobian” tensor J is then

defined as

g x; “A”; 1ð Þ ⋯ g x; “T”; 1ð Þ
⋮ ⋱ ⋮

g x; “A”;Lð Þ ⋯ g x; “T”;Lð Þ

2
4

3
5

which requires mutating x to all nucleotides at
all positions. Note that J ∈ ℝL� Xj j�L� Xj j . This
tensor J is then modified to produce a mean-
centered tensor Ĵ by computing each entry in
this tensor as

Ĵi; j;k;l ¼ Ji;j;k;l � 1

L

XL
i′¼1

Ji′;j;k;l �
1

Xj j
XXj j

j′¼1

Ji;j′ ;k;l

� 1

L

XL
k′¼1

Ji;j;k′;l �
1

Xj j
XXj j

l′¼1

Ji;j;k;l′

and is then symmetrized by computing, for
each entry

~Ji; j;k;l ¼ 1

2
Ĵi; j;k;l þ Ĵk;l;i; j

� �
to produce a final symmetrized tensor ~J.
We can turn ~J into a positional “couplings

map” matrix C′ ∈ ℝL�L in which each entry
can be intuitively thought of as representing
a “Euclidean” magnitude of the change in the
logits across all values of the vocabulary Xj j,
where a larger magnitude change indicates a
greater information “coupling” between the two
corresponding positions; more concretely, to
calculate each entry in C′, we compute

C′i; j ¼
 XXj j

n¼1

XXj j

m¼1

~J
2
i;n; j;m

!1
2

We now define the “average product correc-
tion” (APC) function a: L½ � � L½ � → ℝ as com-
puting, for each entry in a matrix X ∈ ℝL�L

a i; j;Xð Þ ¼
Xi;j �

XL

i′¼1
Xi′; j

� � XL

j′¼1
Xi; j′

� �
XL

i′¼1

XL

j′¼1
Xi′; j′

� 1 i ¼ jf g

where 1 �f g ∈ 0; 1f g is the indicator function.
We are now ready to define the final matrix,
C ∈ ℝL�L , which is obtained by computing,
for each entry in C

Ci;j ¼ a i; j;C′ð Þ
Throughout the text, when we refer to the

“categorical Jacobian matrix” or simply the
“categorical Jacobian,” we are referring to
the matrix C.
We computed the categorical Jacobianmatrix

using Evo fine-tuned on IS200/IS605 sequences
for natural IS605 elements ISHp608, ISDge10,
and ISDra2 using the full IS sequence flanked
with 500 bp of natural context on either side,
where each pair of flanking sequences is ex-
tracted from the best BLAST (151) hit against
the nr/nt databases for the IS sequence from
ISFinder (71).

IS200/IS605 filtering of generations
and construct design

To nominate generated IS200/IS605 sequences
for synthesis and experimental validation, the

sequenceswere further curated as follows. TnpA
proteins from generated sequences were first
searched with blastp (151) against four natural
TnpA proteins that were used as positive con-
trols, originating from IS200/IS605 elements
ISSpn6, ISHp608, ISDge10, and ISStin10. Align-
mentswere filtered to keep only those thatwere
between 100 and 200 amino acids in length, and
to keep only those that had a trimmed percent
identity with the nearest training example that
was <90%, and those that were at least 50%
identical to the nearest positive control as es-
timated by the blastp alignment. Structures of
TnpA proteins from the remaining 723 ISSpn6-
like, 697 ISHp608-like, 123 ISDge10-like, and
1686 ISStin10-like generated sequences were
predicted using ESMFold (47) as monomers
and only proteins withmean pLDDTs≥0.7 were
retained. Generations were further reduced
by selecting for generations where the TnpA
protein contained at least one HUH and one
YXXXQ amino acid motif, had a TnpA start
codon within ≤500 bp from the start of the
generation, and where the TnpA protein length
was ≤180 amino acids.
For remaining IS200-like generations, we fur-

ther required that at least 250 bp be on either
side of the predicted TnpA CDS. The 200 bp
sequences flanking the TnpA CDSwere searched
for perfect hairpins (no mismatches or gaps al-
lowed in the stem, and loop length ≤5 bp), and
sequences withmax length perfect hairpin stems
≤6bp in the200bp left of theTnpACDSor≤8bp
in the 200 bp right of the TnpACDSwere filtered
out (fig. S20C).
For the 247 ISStin10-like and 102 ISSpn6-

like generations passing these filters, we com-
puted upstream base pair propensity vectors
using ViennaRNA (144) for the 200 bp on either
side of the TnpA CDS (fig. S20D) by taking the
row sum of the base pair propensity matrix
where all pairwise base pair propensities were
calculated using ViennaRNA.get_pr(i, j) for i ≤ j.
The resulting upstream base pair propensity
vectors for each generation were hierarchical-
ly clustered with the upstream base pair pro-
pensity vectors for ISSpn6 and ISStin10 on
Euclidean distancewith theUPGMAalgorithm.
A dendrogram threshold was chosen manually
by visual examination, and selected clusters
were extracted using scipy.cluster.hierarchy.
fcluster (fig. S20E). This process was repeated
with remaining IS200-like candidates with
best matches to ISStin10 against the IStin10
upstream base pair propensity vectors (fig.
S20F), as well as with best matches to ISSpn6
against the ISSpn6 upstream base pair pro-
pensity vectors (fig. S20G). For any remaining
sequences, the TnpA dimer structure was pre-
dicted using AlphaFold-Multimer-v2.3.0 via
ColabFold (152) using two models with three
recycles each, and sequences with TnpA dimer
structures that did not appear to dimerize via
pAE scores were discarded.
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Remaining candidates were formatted for
IDT synthesis as 520 bp sequences containing
30 bp of filler sequence containing a primer
binding site for amplification followed by the
200 bp to the left of the TnpA CDS followed
by 60 bp of filler sequence containing primer
binding sites for two primers facing out fol-
lowed by the 200 bp to the right of the TnpA
CDS followed by 30 bp of filler sequence con-
taining a primer binding site for amplification
(data S1). Resulting sequences were uploaded
to the IDT web portal and 12 ISStin10-like and
12 ISSpn6-like candidates were selected from
the sequences that had green and yellow IDT
synthesizability scores. The TnpA correspond-
ing to these sequences were codon optimized
using the IDT codon optimization tool set to
E. coli and flanked with the standard T7 pro-
moter, RBS, and T7 terminator sequences for
PURExpress (NEB) as listed in the manufac-
turer’s manual. An additional TnpA mutant
construct in which any YXXXQ motif in the
sequence was mutated to AXXXQ was also
designed for each candidate. The codon-optimized
TnpA and TnpAmutant protein coding sequences
for PURExpress and end-containing sequences
were ordered as IDT eBlocks.
For remaining IS605-like generations, we fur-

ther required that at least 250 bp be upstreamof
the predicted TnpACDS and that at least 200 bp
be downstream of the predicted TnpB CDS.
We then filtered for sequences with TnpB pro-
tein start codon distances of at most 100 bp
downstream of the TnpA protein stop codon.
For the 407 ISHp608-like and 67 ISDge10-

like generations passing these filters, we for-
matted the ends for IDT synthesis as 520 bp
sequences containing 30 bp of filler sequence
containing a primer binding site for amplifi-
cation followed by the 200 bp to the left of the
TnpA CDS followed by 60 bp of filler sequence
containing primer binding sites for two pri-
mers facing out followed by the −50:150 bp to
the right of the TnpB CDS followed by 30 bp of
filler sequence containing a primer binding site
for amplification (data S1).Resulting sequences
were uploaded to the IDTweb portal and only
the 37 ISDge10-like and the 20 ISHp608-like
sequences that were green by IDT synthesiz-
ability scores were retained. For these sequences,
the TnpA dimer structure was predicted using
AlphaFold-Multimer-v2.3.0 via ColabFold (152)
using two models with three recycles each, and
sequences with TnpA dimer structures that did
not appear to dimerize via pAE scores were
discarded. From the remaining sequences, 12
ISStin10-like and 12 ISSpn6-like candidates
were selected ensuring that the best sequence
identity matches to the fine-tuning set were
≥50%. For final synthesis and experimental
validation, a different 60 bp filler sequence
was used for the ISHp608-like candidates com-
pared to the ISStin10-like, ISSpn6-like, or
ISDge10-like sequences to eliminate a primer-

binding site containing a TTAC, which is the
canonical ISHp608 target site. The TnpAs
corresponding to these 24 candidate sequences
were codon optimized using the IDT codon op-
timization tool set to E. coli and flanked with
the standard T7 promoter, RBS, and T7 termi-
nator sequences for PURExpress (NEB) as listed
in the manufacturer’s manual. An additional
TnpA mutant construct in which any YXXXQ
in the sequence was mutated to AXXXQ was
also designed for each candidate. The codon-
optimized TnpA and TnpAmutant PURExpress
and end-containing sequences were ordered as
IDT eBlocks.
Similar eBlocks encoding TnpA using the

natural sequence, encoding a TnpA mutant
with the catalytic tyrosine mutated to alanine,
and a 520 bp sequence containing the ends
were ordered for the natural IS200 trans-
poson ISSpn6 and the natural IS605 trans-
poson ISHp608.

IS200/IS605 TnpA protein preparation

TnpA and TnpA-mutant eBlocks were PCR am-
plified using NEBNext 2xPCR mastermix (New
England Biolabs) for 35 cycles using an an-
nealing temperature of 65°C and an elongation
time of 15 s in 50 mL reactions with primers
PURExpress_T7_F and PURExpress_T7_F (se-
quences provided in data S1), column purified
using a QIAQuick PCR purification kit (Qiagen),
and diluted to 30 ng/mL. In vitro transcription-
translation reactions were performed using
PURExpress (New England Biolabs) in 27 mL
reactions containing 10 mL solution A, 7.5 mL
solution B, 1 mL of Murine RNAse Inhibitor
(NEB), and 8.5 ul (255 ng) of template DNA.
DHFR expression plasmid provided with the
PURExpress kit was used as template DNA
for reactions lacking TnpA protein. Reactions
were incubated for 3 hours at 37°C and di-
rectly transferred to in vitro reactions.

IS200/IS605 substrate DNA preparation

Substrate eBlocks were PCR amplified using
NEBNext 2xPCR master mix (NEB) for 35 cy-
cles using an annealing temperature of 65°C
and an elongation time of 15 s in 100 mL reac-
tions with a forward primer containing 3 PTOs
and a reverse primer containing a 5′ phosphate
(ssDNA_substrate_PTO_F and ssDNA_substrate_
5phos_R; sequences provided in data S1), col-
umn purified using QIAprep Spin Miniprep
Columns (Qiagen), and eluted in 45 mL water.
The Guide-it Long ssDNA Production System
v2 (Takara Bio) was used to generate sub-
strate ssDNA in 50 mL reactions with 30 mL
purified PCR product following the manu-
facturer’s conditions with an incubation time
of 10 min at 37°C and 5 min at 80°C with
Strandase A, and 5 min at 37°C and 5 min at
80°C with Strandase B. The resulting ssDNA
substrates were then column purified using a
NucleoSpin Gel and PCR Clean-Up kit (Takara

Bio) by diluting the reaction to 100 mL total
volume, adding 200 mL buffer NTC (Takara
Bio), mixing thoroughly before adding to the
column, and washing with 600 mL buffer NT3
before eluting in 30 mL elution buffer. Result-
ing ssDNA products were diluted to 20 ng/mL
as quantified using a NanoDrop One in ssDNA
mode (ThermoScientific).
Substrate PCR products for use in the in vitro

assay as dsDNA were further treated with exo-
nuclease I (E. coli, New England Biolabs) to
remove residual PCR primers or other ssDNA in
20 mL reactions containing 600 ng PCR pro-
duct, 2 mL 10x exonuclease I buffer, and 5 mL
of exonuclease I. After column purification
using aQIAQuick PCR purification kit (Qiagen),
the resulting dsDNA substrate was diluted to
20 ng/mL.

IS200/IS605 in vitro TnpA
excision/insertion assays

In vitro transposition reactions were performed
by incubating 10 mL PURExpress product with
10 mL (200 ng) of ssDNA or dsDNA substrate
for 2 hours at 37°C. Reactions were treated
with 1 mL RNase A (20 mg/mL, New England
Biolabs) for 5min at 37°C and 10 mLProteinase
K (8 units, New England Biolabs) for 15 min
at 37°C. Resulting ssDNA products were then
column purified using a NucleoSpin Gel and
PCR Clean-Up kit (Takara Bio) by diluting the
reaction to 100 mL total volume, adding 200 mL
buffer NTC (Takara Bio), mixing thoroughly
before adding to the column, and washing with
600 mL buffer NT3 before eluting in 30 mL
elution buffer. PCRs were then performed in
50 mL reactions for 35 cycles using an anneal-
ing temperature of 65°C and an elongation
time of 20 s using 4 mL eluate, NEBNext 2x
PCR master mix (New England Biolabs) and
primers FillerOut_F and FillerOut_R for
ISStin10-like, ISSpn6-like, and ISDge10-like
candidates and using primers ISHp608-like_
FillerOut_F and FillerOut_R for ISHp608-like
candidates (sequences are provided in data
S1). PCR products were column-purified using
a QIAquick PCR Purification kit (Qiagen) and
run on either a 2% E-Gel EX agarose gel pre-
stained with SYBR Gold or on a 48-well 2%
E-Gel agarose gel pre-stained with SYBR Safe
(ThermoScientific).

IS200/IS605 nanopore sequencing analysis
of PCR products

PCR products from TnpA reactions were sub-
mitted for nanopore sequencing via the Pre-
miumPCRsequencingservice fromPlasmidsaurus
(2 samples per condition), which uses the li-
gation sequencing kit v14 (Oxford Nanopore
Technologies) and R10.4.1 flow cells (Oxford
Nanopore Technologies). Reads were then pro-
cessed by filtering for the expected read struc-
ture (FillerOut_F/ISHp608-like_FillerOut_F
followed by sequence followed by FillerOut_R
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reverse complemented or FillerOut_R fol-
lowed by sequence followed by FillerOut_F/
ISHp608-like_FillerOut_F reverse complemented),
by looking for expected primer sequences in
the 30 bp on either end, allowing for up to four
errors (sequences are provided in data S1).
Reads passing this filtering were thenmapped
to the relevant substrate sequence by sliding a
window across the sequence, splitting eachwin-
dow into a left and right half, and matching
each half to the substrate sequence, requiring
a perfect match for both sides. The window
was twice the minimum length i required for
all substrings of length i from the substrate se-
quence to be unique. Each match was then
added to a jumpmapmatrix for each condition
at the position corresponding to the right-
most base of the left side match and the left-
most base of the right-side match (fig. S22A).
Transposon boundaries and hairpins were
annotated based on these jump maps and ad-
ditional manual processing and inspection
of reads and alignments via Geneious Prime
2024 (https://www.geneious.com).

Gene essentiality prediction

We obtained binary genome-wide essentiality
results for 56 bacterial genomes from the DEG
database (73) in which coding genes are la-
beled with “essential” or “nonessential” binary
labels. We also obtained genome-wide essen-
tiality results for two phage genomes, lambda
and P1, from Piya et al. (74) and used the bi-
nary labels assigned by the study authors based
on the results of their CRISPRi screen.
To perform the in silico gene essentiality

screen, we obtained thewhole bacterial genome
using the RefSeq IDs provided byDEG.We used
RefSeq: NC_001416 as the reference genome
for lambda phage and RefSeq: NC_005856 as
the reference genome for P1 phage. We iterated
over all genes annotated as protein coding and
computed a score with a nucleotide language
model for each gene. To compute the score, we
provided the language model with different
levels of context: (i) the sequence of the gene
only, (ii) the sequence of the gene plus equally
distributed context on both sides of the gene
up to a total 8192 bp, or (iii) the sequence of the
gene plus equally distributed context on both
sides of the gene up to a total 65,536 bp. If a
gene extended beyond 8192 bp, we used the first
8192 bp of the gene sequences. We computed
the score as the difference in log-likelihoods be-
tween a mutated sequence and the unmutated
wild-type sequence. Tomutate the sequence, we
inserted multiple stop codons “TAATAATAA-
TAGTGA” at an offset of 12 nucleotides into
the sequence; for the 8192 and 65,536 bp con-
text settings, we add context to both sides of the
gene after the insertion. Additionally, for the
8192 bp setting, we tested three other strategies:
(i) inserting a single stop codon “TAA” 12 nu-
cleotides into the sequence, (ii) deleting the

entire gene sequence (after whichwe provided
8192 context centered on the deleted gene) (fig.
S27), or (iii) inserting stop codons tiled across
the coding sequence at an interval of every
20 codons (or 60 bp) beginning with the first
codon. As an additional control, we also used
the gene’s linear position in the reference
genome as the value with which to predict
essentiality. If a model were simply using po-
sitional information to make essentiality pre-
dictions, the performance would be similar to
this control.
We also used the conservation of a gene as

another control. To estimate conservation, we
extracted all protein sequences from the
OpenGenome dataset. For each genome cor-
responding to each essentiality study, we per-
formed an all-by-all sequence search between
all of the protein sequences in the genome-of-
interest and all of the proteins in OpenGenome.
Todo this reasonablyefficiently,weusedmmseqs
easy-search with default parameters, where
the protein sequences in the genome-of-interest
constituted the query sequences and the Open-
Genome protein sequences constituted the tar-
get sequences. To compute the conservation of
each gene,we counted thenumber of significant
hits identified by mmseqs under a nominal E
value threshold of 1 × 10−2. We assumed that a
greater number of hits corresponds to higher
conservation, which in turn corresponds to
greater essentiality.
We used the change in log-likelihoods (or

the control “scores”) to predict the binary gene
essentiality labels and compute the strength of
the prediction with the AUROC score and the
average precision score as implemented in
scikit-learn. We assessed statistical significance
of the AUROC with a permutation-based meth-
od inwhich a null distribution is constructed
by permuting the binary labels and recom-
puting the subsequent AUROC.We performed
100,000 permutations to construct this null
distribution.

Genome-scale generation and evaluation

We used Evo pretrained at 131k context to sam-
ple sixteen sequences of lengths ~1 Mb. We
sampled with a temperature of 1.0 and a top-k
value of 4 following a standard autoregressive
sampling procedure (139). We prompted the
model with four species-specific prompts:
1) |d__Bacteria;p__Tenericutes;c__Mollicutes;

o__Mycoplasmatales; f__Mycoplasmataceae;
g__Mycoplasma;s__Mycoplasma genitalium||
2) |d__Bacteria;p__Bacillota;c__Bacilli;o__

Staphylococcales;f__Staphylococcaceae; g__
Staphylococcus;s__Staphylococcus aureus||
3) |d__Bacteria;p__Pseudomonadota;c__

Gammaproteobacteria;o__Enterobacterales;
f__Enterobacteriaceae;g__Klebsiella;s__
Klebsiella pneumoniae||
4) |d__Bacteria;p__Pseudomonadota;c__

Gammaproteobacteria;o__Enterobacterales;

f__Enterobacteriaceae;g__Escherichia;s__
Escherichia||
These prompts correspond to the species

Mycoplasma genitalium, Staphylococcus aureus,
Klebsiella pneumoniae, and E. coli, respective-
ly, and follow Greengenes-style lineage strings,
which concatenate all taxa starting with the
most ancestral and ending with the most cur-
rent, separated by semicolons. A single charac-
ter prefix is also added to each taxon indicating
its rank. These lineages strings were prepended
to each contig during the 131k-context-extension
phase of pretraining. We sampled four sequences
for each prompt, leading to a total of sixteen
sequences.
We evaluated these generations with CheckM

(77), a tool that computes basic genome quality
metrics based on whether a given long DNA
sequence has similar properties as known bac-
terial genomes. CheckM uses Prodigal (140) to
identify coding sequences and computes the
coding density as one metric of genome qual-
ity. CheckMwill also search for the presence of
genes that are highly conserved across much
of prokaryotic diversity. We divided all of our
generations into discrete segments of up to
131,072 bp and computed the distribution of
CheckM coding densities across these crops.
As a positive control, we randomly selected
100 bacterial genomes from GTDB and used
CheckM to compute the coding densities for
131,072 bp crops from these genomes. As a
negative control, we generated 1000 sequen-
ces of length 131,072 in which the four DNA
base pairs were sampled uniformly at random.
We then used CheckM to compute the coding
densities on this random sequence. We also
used tRNAscan-SE to search for tRNA sequences
in our generated sequences andweusedbarrnap
to search for rRNA sequences.
We usedESMFold to obtain atomic-level struc-

ture predictions for all of the Prodigal-defined
coding sequences in each of our generations.
We limited ESMFold structure predictions to
coding sequences between 100 and 1024 ami-
no acids, inclusive. We computed the mean
backbone pLDDT for all predicted structures.
We used the biotite Python package to com-
pute the percentages of secondary structure
elements for all predicted structures. We used
FoldSeek easy-search to perform efficient TM-
based alignment (--alignment-type 1), and all
other parameters set to their default values,
to perform an all-by-all structural search be-
tween ESMFold structures corresponding to
Evo-generated sequences and the structure
predictions for UniRef50 provided in the
AlphaFold Protein Structure Database (https://
alphafold.ebi.ac.uk/). Structure alignments were
scored as the average of the query TMscore
and the target TMscore, where a score greater
than 0.4 was considered a structural match.
We used these structural matches, along with
GO terms assigned to UniRef50 clusters, to
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infer GO terms for the Evo-generated proteins
as well. We used PyMOL to visualize protein
structures corresponding to the five GO “mo-
lecular function” terms with the most repre-
sentation among the Evo generated proteins.
We evaluated genomic sequence patterns

including tetranucleotide and stop codon fre-
quencies. Tetranucleotide usage deviations
(TUDs) were calculated as previously described
(78). TUD phylogenies were generated by hi-
erarchical clustering using a distance matrix
constructed from the Euclidean distances of
log2transformed TUDs for each genome.
Stop codon frequencies in the three reading
frames of Prodigal-identified ORFs were stored
as vectors consisting of nine scalar counts. Per-
centages of stop codons were calculated as
the total sum of each stop codon (TAA, TAG,
or TGA) relative to the total sum of all stop
codons in a given vector. Stop codon ratios
were calculated as the relative proportions
of all nine scalars in a given vector.
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