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Abstract

The genome is a sequence that completely encodes the DNA, RNA, and proteins that orchestrate the function
of a whole organism. Advances in machine learning combined with massive datasets of whole genomes could
enable a biological foundation model that accelerates the mechanistic understanding and generative design
of complex molecular interactions. We report Evo, a genomic foundation model that enables prediction and
generation tasks from the molecular to genome scale. Using an architecture based on advances in deep
signal processing, we scale Evo to 7 billion parameters with a context length of 131 kilobases (kb) at single-
nucleotide, byte resolution. Trained on whole prokaryotic genomes, Evo can generalize across the three
fundamental modalities of the central dogma of molecular biology to perform zero-shot function prediction
that is competitive with, or outperforms, leading domain-specific language models. Evo also excels at multi-
element generation tasks, which we demonstrate by generating synthetic CRISPR-Cas molecular complexes
and entire transposable systems for the first time. Using information learned over whole genomes, Evo can
also predict gene essentiality at nucleotide resolution and can generate coding-rich sequences up to 650
kb in length, orders of magnitude longer than previous methods. Advances in multi-modal and multi-scale
learning with Evo provides a promising path toward improving our understanding and control of biology
across multiple levels of complexity.

1. Introduction

DNA is the fundamental layer of biological information that is responsible for transmitting the results of evo-
lution across generations of life (Morgan, 1910; Watson and Crick, 1953; Nirenberg and Matthaei, 1961).
Evolutionary variation in genome sequences is a reflection of adaptation and selection for biological function
at the phenotypic level (Dobzhansky, 1951). Rapid advances in DNA sequencing technologies have enabled
the systematic mapping of this evolutionary diversity at the whole-genome scale.

A machine that learns this breadth of information across genomes could model the function of DNA, RNA,
and proteins, as well as their diverse interactions that orchestrate complex biological functions, mediate dis-
ease, or create a complete organism. Modern machine learning algorithms combined with massive datasets of
genomic sequences could enable a general biological foundation model that learns the intrinsic logic of whole
genomes.

However, current efforts to model molecular biology with machine learning have been focused on creating
modality-specific models that are specialized to proteins, regulatory DNA, or RNA (Jumper et al., 2021; Rives
et al., 2021; Avsec et al., 2021; Theodoris et al., 2023). In addition, generative applications in biology have
been limited to the design of single molecules, simple complexes (Watson et al., 2023; Madani et al., 2023;
∗Equal contribution. †Corresponding author. B.L.H. (brianhie@stanford.edu); P.D.H. (patrick@arcinstitute.org).
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Figure 1 | Pretraining a genomic foundation model across prokaryotic life. (A) A model of genome se-
quences at single-nucleotide resolution could learn all of the information encoded in regulatory DNA and in
the sequences of the other modalities within the central dogma (proteins, coding RNA, and noncoding RNA).
Even further, it could learning covariation involving multiple genes and regulatory elements. The status of
DNA as the fundamental layer of biological information makes it a productive modality at which to develop
a biological foundation model. (B) A model that predicts the likelihood of the next token given a sequence
of tokens, referred to as autoregressive modeling, can learn complex patterns underlying DNA sequences.
StripedHyena is a deep signal processing architecture for long sequences, obtained by hybridizing attention
and hyena operators. (C) We pretrained Evo, a 7B parameter model with the StripedHyena architecture, on
bacterial genome sequences from GTDB and IMG/PR and viral sequences from IMG/VR, excluding sequences
from viruses that infect eukaryotic hosts. (D) A histogram depicting the sequence length of the genomes in
GTDB. mb: megabases. (E) Pie charts depicting the taxonomic makeup of GTDB based on the kingdom (left)
and phylum (right). (F) Results from a first-of-its-kind scaling laws analysis for large-scale DNA pretraining.
Models improve monotonically with scale, with significant differences between architectures. Eval. PPL: eval-
uation perplexity. (G) To determine optimal architecture and scaling for Evo, we compared scaling rates of
different models pretrained on the compute–optimal frontier, i.e., with optimal allocation of compute between
dataset size and model size. Eval. PPL: evaluation perplexity. FLOPs: Floating point operations.
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Ingraham et al., 2023), or short DNA sequences (DaSilva et al., 2024; Lal et al., 2024). In contrast, com-
plex biological processes, such as gene regulation, CRISPR immunity, or genetic transposition, rely on many
interactions involving molecules across multiple modalities.

A DNA model that unifies information across the molecular, systems, and genome scale could learn from
large genomic regions to capture systems-wide interactions and enable the design of more sophisticated bi-
ological functions. By operating at single-nucleotide resolution, this model would be able to incorporate the
evolutionary effects of sequence variation, such as individual single-nucleotide mutations that completely alter
organism function.

Inspired by the recent success of large language models, many contemporary approaches leverage autore-
gressive Transformers to model biological sequences and to capture these system-wide interactions. However,
existing attempts to model DNA as a language (Zvyagin et al., 2023; Dalla-Torre et al., 2023; Zhou et al.,
2023) are limited by the prevailing dense Transformer architecture, which incurs high computational cost
as input sequence lengths grow relative to model width (scaling quadratically) and generally underperforms
at single-nucleotide or byte-level resolution (compared to models trained at coarser resolutions) (Tay et al.,
2021). Recent algorithmic advances in extending context length of attention-based models (Chen et al., 2023;
Liu et al., 2023) have similar resolution limitations. As a result, Transformer-based DNA models are con-
strained to short context lengths and use schemes that aggregate nucleotides into the basic units of language
models, called tokens, thereby sacrificing single-nucleotide resolution (Zvyagin et al., 2023; Dalla-Torre et al.,
2023; Fishman et al., 2023; Ji et al., 2021).

Here, we present Evo, a 7 billion parameter genomic foundation model trained to generate DNA sequences
at whole-genome scale. Evo uses a context length of 131k tokens and is based on the StripedHyena architec-
ture (Poli et al., 2023b), which hybridizes attention and data-controlled convolutional operators to efficiently
process and recall patterns in long sequences. Evo is trained on a prokaryotic whole-genome dataset consisting
of 300 billion nucleotides and uses a byte-level, single-nucleotide tokenizer.

We demonstrate that Evo can be used in both prediction and generation tasks at the molecular, systems,
and genome scale. In zero-shot evaluations, Evo is competitive with state-of-the-art protein language models
at predicting the fitness effects of mutations on E. coli proteins, outperforms specialized RNA language models
in predicting fitness effects of mutations on noncoding RNAs, and predicts the combinations of prokaryotic
promoter-ribosome binding site (RBS) pairs that lead to active gene expression from regulatory sequence
alone. Moving beyond single molecules and short sequences, Evo learns the co-evolutionary linkage of coding
and noncoding sequences in order to design synthetic multi-component biological systems including CRISPR-
Cas systems and transposable elements. At the whole-genome scale, Evo can predict essential genes in bacteria
or bacteriophages without any supervision. We also use Evo to generate sequences over 650 kilobases (kb)
with plausible genomic coding architecture, a scale that is orders of magnitude greater than previous methods
(DaSilva et al., 2024; Lal et al., 2024; Watson et al., 2023). Taken together, Evo establishes a foundational
paradigm for predictive and generative biological sequence modeling (Figure 1A). Further development of
Evo will enable a deeper mechanistic understanding of biology and accelerate our ability to engineer life.

2. Results

2.1. Modeling long sequences at nucleotide resolution with the StripedHyena architecture

Evo is a genomic foundation model with 7B parameters trained with a context length of up to 131k tokens,
using single-nucleotide, byte-level tokenization. To model long sequences at nucleotide resolution efficiently,
which we demonstrate by generating sequences over 650k tokens, we leveraged the StripedHyena architecture
(Poli et al., 2023b) (Figure 1B) that builds on emerging techniques in deep signal processing (Li et al., 2020;
Gu et al., 2021; Orvieto et al., 2023; Massaroli et al., 2024). The model is a hybrid of 29 layers of data-
controlled convolutional operators (hyena layers) interleaved with 3 layers (10%) of multi-head attention
equipped with rotary position embeddings (RoPE) (Su et al., 2024) (Methods).

Model hybridization, first proposed to address shortcomings of state-space models (Ma et al., 2022; Fu
et al., 2022; Pilault et al., 2024) has recently been shown to improve scaling performance on language model-
ing of both standalone Hyena and Transformer architectures (Poli et al., 2023b). StripedHyena is designed to
benefit from the specialization of each of its layer types, with hyena layers implementing the bulk of the com-
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putation required for sequence processing and attention layers supplementing the ability to recall information
from the context of an input.

Hyena layers process sequences in an input-dependent manner via compositions of short and long con-
volution filters (Figure 1B), making the layer especially effective at filtering noisy patterns that can occur in
DNA and at aggregating individual nucleotides into motifs. Compared to HyenaDNA (Nguyen et al., 2023), a
previous generation of DNA models leveraging a Hyena architecture (Poli et al., 2023a), Evo is based on an
improved hybrid design and scaled to 1000× larger model size and 100× more data.

2.2. Training Evo at scale on OpenGenome

We compiled a large genome dataset called OpenGenome (Methods) with over 80, 000 bacterial and archaeal
genomes, andmillions of predicted prokaryotic phage and plasmid sequences, covering 300B nucleotide tokens
(Figures 1C and S1) (Parks et al., 2022; Camargo et al., 2023, 2024). For safety considerations, we excluded
viral genomes that infect eukaryotic hosts. Like most language models, Evo is pretrained via a next-token
prediction objective on raw genome sequences with no explicit supervision or annotations. In order to predict
the next token given a sequence of tokens, the model must learn the distribution of the genome data and be
aware of the biological sequence motifs found in the collected genomes. Pretraining involves 2 stages: the
first stage uses a context length of 8k tokens, while the second context extension stage uses 131k tokens as
context. Depending on the downstream task, we select a base model from one of the two stages to finetune
on smaller datasets of interest for generation.

2.3. StripedHyena demonstrates favorable scaling laws on DNA sequence data

Aiding our model design, we performed the first scaling laws analysis (to our knowledge) for DNA sequence
modeling. The main objective of this type of analysis is to determine the relationship between training, ar-
chitectural details, and performance metrics via a systematic experimental protocol (Hoffmann et al., 2022;
Kaplan et al., 2020). Once a set of scaling laws is obtained, it can then be used as a guide to optimally scale
training to larger models and datasets.

Here, we compare different classes of architectures via a compute-optimal protocol, aimed at evaluating
results on the compute-optimal frontier (Methods). We trained over 300 models across four architectures:
Transformer++, Mamba, Hyena, and StripedHyena. Transformer++ is a state-of-the-art Transformer, and
Mamba is a modern architecture using data-controlled state-space models (Gu and Dao, 2023).

We found Transformer++ to yield significantly worse perplexity at all compute budgets (Figures 1G), a
symptom of the inefficiency of the architecture at the byte resolution. State-space and deep signal processing
architectures are observed to improve on the scaling rate over Transformer++, with Hyena and StripedHyena
resulting in the best scaling rate. We observed stable training for StripedHyena throughout all the studied
model sizes and learning rates during the scaling analysis.

We also compare architecture performance outside the compute-optimal frontier, namely with allocations
of the computational budget that may be suboptimal. Performance outside the compute-optimal frontier is
important in practice, as most models (including Evo) are trained for more tokens than recommended by
compute-optimal scaling laws. We estimate 250 billion to be the compute-optimal number of tokens for Evo
7B given the FLOP budget, meaning the model was trained at a 17% offset from the compute-optimal model
size during the initial 8192 sequence length pretraining phase of 300 billion tokens. Both Transformer++ and
Mamba experienced numerical instability during training, and suffered from a sharper performance degrada-
tion of the scaling rate outside the compute-optimal frontier, in contrast to StripedHyena (further analysis in
Figure S3). These findings motivate the choice of StripedHyena as the architecture for Evo.

2.4. Evo performs zero-shot function prediction across DNA, RNA, and protein modalities

2.4.1. Predicting mutational effects on protein function

Beyond evaluating perplexity, we investigated the model’s zero-shot performance on biologically relevant
downstream tasks. For example, language models specifically trained on large corpuses of protein sequences
or nucleotide coding sequences have demonstrated an impressive ability to predict mutational effects on pro-
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Figure 2 | Evo performs zero-shot function prediction for proteins, non-coding RNAs, and regulatory
DNA. (A) We obtained deep mutational scanning (DMS) datasets in which many mutations are made to a
protein and a corresponding fitness score is experimentally measured for each protein variant. On the same
set of mutated sequences, we compute its likelihood (or pseudolikelihood) under a protein language model
or a nucleotide language model (LM). We then correlated these likelihoods with the experimental fitness
measurements and used the strength of the correlation to measure the performance of zero-shot function
prediction. (B) Evo has comparable predictive performance, measured via Spearman correlation, to state-
of-the-art protein language models and higher performance than nucleotide language models. Bar height
indicates the mean; each dot indicates a different DMS study. LM: language model; Nucl. Trans.: Nucleotide
Transformer. (C) We obtained datasets in which many mutations are made to a ncRNA and a corresponding
fitness score is experimentally measured. Predictive performance is measured as in the method described in
(A). (D) Evo exhibits higher performance than nucleotide language models at predicting mutational effects on
ncRNA function. Bar height indicates themean; each dot indicates a different DMS study. LM: languagemodel;
Nucl. Trans.: Nucleotide Transformer. (E)We obtained a dataset in which Kosuri et al. (2013)measuredmRNA
and protein expression of a gene downstream of ∼12k promoter-RBS pairs in E. coli. For each promoter-RBS
pair, we computed the likelihood of the sequence under a language model or a score indicating the frequency
withwhich a promoter-RBS pair is observed in bacterial genomes. (F,G) Evo has higher predictive performance
of mRNA and protein expression compared to nucleotide language models and to methods for computing the
frequency of promoter-RBS pairs based on sequence alignment (“Seq. align.”). Bar height indicates the mean;
each dot indicates a different DMS study. LM: language model; Nucl. Trans.: Nucleotide Transformer.
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tein function (Meier et al., 2021; Notin et al., 2022; Benegas et al., 2023) without any task-specific finetuning
or supervision. Because Evo is trained on long genomic sequences that contain protein coding sequences, we
tested whether the model would also learn the protein language well enough to perform zero-shot protein
function prediction.

Following work in evaluation of protein language models, we leveraged deep mutational scanning (DMS)
studies which introduce an exhaustive set of mutations to a protein coding sequence and then experimentally
measure the effects of these mutations on various definitions of fitness (fitness is a study-specific metric quan-
tifying how well a protein performs a certain function) (Notin et al., 2022, 2023; Livesey and Marsh, 2023).
The language-model likelihood or pseudolikelihood (Methods) of the amino acid sequence is used to predict
the experimental fitness score (Figure 2A). To adapt this task to nucleotide sequences, we use the wild-type
coding sequence and nucleotide mutations reported in the original DMS studies (Methods).

When we evaluated Evo’s zero-shot ability to predict mutational effects on protein function using DMS
datasets of E. coli proteins, we found that it outperformed all other nucleotide models tested (Figure 2B),
including GenSLM (Zvyagin et al., 2023), a model explicitly trained only on coding sequences with a codon
vocabulary (Figure 1A). Evo also reaches competitive performance with leading protein-specific language
models (Yang et al., 2024; Meier et al., 2021; Lin et al., 2023; Madani et al., 2023) at this task (Figure 2B).
Previous work has shown that improvement beyond this performance range is very difficult for protein lan-
guage models with self-supervised pretraining alone (Li et al., 2024), indicating that Evo is already competitive
with state-of-the-art protein language modeling on bacterial proteins. Notably, Evo is trained on long-context
genomic sequences without any explicit coding sequence annotations. On DMS datasets of human proteins,
Evo is unable to predict mutational effects on fitness (Figure S6A), most likely because the pretraining dataset
only contains prokaryotic sequences. However, we observed a strong association between language-model per-
plexity on the wildtype sequence and fitness prediction performance (Figure S6B), indicating that additional
finetuning or future pretraining on mammalian coding sequences could improve Evo’s performance beyond
bacterial proteins.

2.4.2. Predicting mutational effects on ncRNA function

Next, we tested whether the same pretrained model could learn functional information about noncoding RNAs
(ncRNA), such as tRNAs, rRNAs, and ribozymes. ncRNAs are encoded in the genome in a similar manner to
proteins and they serve a variety of essential functions, including in protein synthesis and gene regulation.
We collected ncRNA DMS (Methods), which are conceptually similar to protein DMS datasets but where
mutations are made to the ncRNA sequence instead. We likewise evaluated Evo’s ability to perform zero-
shot ncRNA fitness prediction using the results of experimental ncRNA DMS studies as the ground truth score
(Figure 2C).

We found that Evo again outperforms all other tested nucleotide language models at this task, including
RNA-FM (Chen et al., 2022), an RNA language model that is explicitly trained on ncRNA sequences (Figure
2D). We observed especially strong predictive performance on a study that measured the effects of mutations
to the 5S ribosomal RNA on the growth rate of E. coli (Spearman 𝑟 = 0.64, two-sided 𝑡-distributed 𝑃 = 7.3 ×
10−4). Together with our results for protein sequences, these results indicate that Evo is able to learn from its
prokaryotic genome training data to predict functional properties across different molecular modalities.

2.4.3. Predicting gene expression from regulatory DNA

Given that Evo is also trained on prokaryotic regulatory DNA sequences in addition to sequences that encode
proteins or ncRNA, we investigated whether it is able to learn aspects of DNA regulatory grammar. To this
end, we leveraged a dataset in which Kosuri et al. (2013) constructed approximately 12k combinations of
common promoters and ribosome binding sites (RBSs) and measured the corresponding mRNA and protein
expression of a reporter gene for each promoter-RBS pair in E. coli (Figure 2E). We find that the model
likelihood scores that Evo assigns to promoter-RBS sequences is significantly correlated with mRNA expression
(Spearman 𝑟 = 0.41, two-sided 𝑡-distributed 𝑃 < 1 × 10−5) (Figure 2F) and predictive of binarized protein
expression (area under the receiver operating characteristic curve [AUROC] = 0.68, permutation-based 𝑃 <

1×10−5) (Figure 2G) (Methods). Evo’s predictive performance is also substantially higher than those of other
nucleotide language models, though none of these baseline language models have been trained on datasets
containing regulatory elements.
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To predict gene expression from the promoter-RBS sequence alone, Evo most likely uses its knowledge
of natural regulatory sequences learned during pretraining, analogous to how protein language models can
predict functional changes based on natural variation in protein sequences (Meier et al., 2021; Notin et al.,
2023). To this end, as an additional benchmark, we aligned the promoter-RBS pairs to our model’s pretraining
dataset of prokaryotic sequences. While we hypothesized that the number or the strength of these alignments
would be predictive of gene expression, we found that computing these alignments using standard bioinfor-
matic tools resulted in poor or nonexistent sequence matches (Methods). Of all techniques we attempted,
none were predictive of gene expression (Figures 2F and 2G), indicating that Evo can distill non-obvious
functional information of regulatory DNA directly from large genomic sequence databases.

Overall, we show how a single foundation model of prokaryotic genomes can perform tasks that have
previously been accomplished by different, domain-specific models (protein language models, RNA language
models, and regulatory DNA models). Despite being trained on long genomic crops without explicit sequence
annotations, Evo still demonstrates an understanding of the constitutive protein-coding sequences, ncRNA
sequences, and regulatory elements.

2.5. Generative design of CRISPR-Cas molecular complexes

Next, we reasoned that Evo should be able to generate functional complexes that involve interactions between
distinct molecular modalities. In prokaryotes, functionally related genes are generally located next to each
other on the linear genome sequence. Because Evo learns covariation patterns involving any genetic element
within its context window, the model should understand interactions between encoded protein and ncRNA
molecules. To demonstrate this capability, we finetuned Evo on a dataset of genomic loci containing CRISPR-
Cas sequences: molecular machines that consist of one or more protein components and one or more ncRNA
components that, together, direct adaptive immunity against viral infection (Wang et al., 2022).

The DNA-targeting Cas9 nuclease is typically encoded within 3,000 to 4,800 bp of coding sequence and
found in close genomic proximity to its cognate CRISPR array (Hsu et al., 2014). Transcription from the
CRISPR array generates non-coding CRISPR RNA (crRNA) molecules that are bound by the Cas protein to
generate a functional defense complex that is required for sequence-specific DNA-targeting (Figure 3A). For
Cas9 in particular, a second trans-activating CRISPR RNA (tracrRNA) forms a duplex with the crRNA to create
a full guide RNA (gRNA). Diverse families of CRISPR-Cas systems are found throughout bacterial and archaeal
life, such as Cas12- or Cas13-based systems that target DNA and RNA, respectively (Koonin and Makarova,
2019).

In the finetuning step, we trained themodel on 82,430 CRISPR-Cas loci extracted from public metagenomic
and genomic sequences, adding special prompt tokens for Cas9, Cas12, and Cas13 that were prepended to the
beginning of each training sequence (Figure 3B). During sampling, these tokens allow us to guide generation
of a specific CRISPR-Cas system type by prompting with the corresponding special token. Strikingly, sampling
8 kb sequences using each of the three Cas token prompts resulted in coherent generations. Depending on
the prompt token used, 15-45% of generations contained Cas coding sequences as long as 5kb as detected by
Cas subtype profile HMMs (Methods). We also observed that prompting with a specific Cas subtype token
typically produced a sample with the expected subtype, demonstrating that Evo can be tuned to generate
sequences with both proteins of interest as well as associated non-coding elements such as CRISPR arrays
(Figure 3C). Sequence alignment with the training dataset revealed that Evo is capable of highly unique Cas
protein generations, as some of the predicted ORFs exhibited less than 40% protein sequence identity to their
respective closest match (Figures 3D and S7).

To evaluate the quality of Cas generation with Evo, we focused on Cas9 generations and evaluated Al-
phaFold2 structure predictions of the sampled Cas9 coding sequence and non-coding RNA complexes against
experimentally determined structures of the Streptococcus pyogenes Cas9 protein and its tracrRNA:crRNA du-
plex. Selected structure predictions of sampled Cas9 sequences show that even low-identity generations bear
resemblance to natural Cas9 structures in key domains such as the RuvC nuclease and protospacer adjacent
motif (PAM)-interacting domains (Figure 3E). Similarly, Evo-generated crRNA:tracrRNA duplexes form pre-
dicted RNA secondary structures resembling the canonical crRNA:tracrRNA duplexes found in naturally oc-
curring Cas9 systems (Figure 3F) (Gasiunas et al., 2020).

When finetuned on CRISPR-Cas systems, Evo can coherently generate diverse samples that resemble nat-
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Figure 3 | Finetuning on CRISPR-Cas sequences enables generative design of protein-RNA complexes. (A)
CRISPR-Cas defense nucleases comprise a large macromolecular complex involving an effector protein bound
to a noncoding guide RNA (gRNA) that is derived from a CRISPR RNA (crRNA). For some CRISPR types, a
trans-activating CRISPR RNA (tracrRNA) is combined with the crRNA to create the final gRNA. Our design task
is to produce sequences that contain these protein and noncoding RNA components. (B) We finetuned Evo,
following its initial 8k pretraining phase, on 8 kb-length genomic sequences containing CRISPR-Cas systems.
During finetuning, we prepended a special conditioning token (“cas9,” “cas12”, or “cas13”) to the beginning
of each sequence, indicating the general type of Cas protein encoded in the sequence. (C) A prompting token
enables controllability over Evo generations. When prompting with the token for a given type of Cas protein,
the most common Cas protein found in the resulting generated sequences corresponds to that token prompt
(for example, prompting with a “cas9” token typically produces Cas9 sequences). (D) Histograms representing
the distribution of percentage identity of a generated Cas protein sequence to any Cas protein sequence in
the training dataset. This distribution is computed across sampling runs involving all three prompts. (E)
Representative generations of Cas proteins alongside the S. pyogenes Cas9 (SpCas9) crystal structure (PDB:
4OO8). (F) Example generations of crRNA:tracrRNA duplexes alongside a canonical S. pyogenes Cas9 duplex.
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urally occuring Cas systems in both sequence and structure. Designing new Cas systems has historically relied
on mining sequence databases for homologous proteins, where natural evolution provides functional diversity.
Generative modeling with Evo provides an alternative design methodology that can be harnessed across the
broad applications of CRISPR technology.

2.6. Generative design of transposable biological systems

In addition to molecular complexes, Evo can learn patterns underlying multi-gene systems. An example of
minimal replicating systems are mobile genetic elements (MGEs), which are found throughout all domains of
life. Their opportunistic spread provides a fundamental force driving sequence variation, new gene function,
and even speciation (Chandler et al., 2020). Insertion sequence (IS) elements are compact MGEs that gener-
ally encode only the components that are required for transposition. The IS605 group is widely distributed
across prokaryotes and consists of three key components: a TnpA transposase that catalyzes peel-and-paste
transposition next to an RNA-guided TnpB nuclease and its cognate 𝜔RNA that bias the selfish inheritance of
the transposable element (Figure 4A) (Meers et al., 2023; Karvelis et al., 2021; Altae-Tran et al., 2021). The
IS605 group belongs to the greater IS200/IS605 family, which includes IS200 group elements that lack the
TnpB endonuclease. Improving our understanding of their biological function and generating new MGEs with
desired properties could lead to more effective genome engineering tools.

We finetuned Evo on 10,720 IS605 elements and 219,867 IS200 elements in their natural sequence context
and used the model to generate novel IS200/IS605 elements (Figure 4B) (Methods). Focusing on generated
sequences that contained both a predicted TnpA and TnpB coding sequence, we successfully detected many
sequences that encoded proteins that diverged substantially from the training set, with 22.5% of TnpA proteins
being <50% identical to the training set, and 90.1% of TnpB proteins (Figures 4C and S8). We found that
87.6% of generated TnpA proteins folded well with ESMFold pLDDT > 70, compared to 25.5% of TnpB
proteins, which may be due to the greater abundance of TnpA proteins in the training set. Through annotation
and inspection of individual examples, we found that some diverse loci encoded coherent transposase and
nuclease proteins that folded well using ESMFold, closely matched experimentally determined structures of
homologous proteins, and also contained predicted 𝜔RNA sequences (cmsearch E-value = 5.6×10−12; Figure
4D).

MGEs are highly abundant and evolve rapidly, making it difficult to systematically identify the precise
boundaries of the elements in their natural sequence context (Durrant et al., 2020). Using the finetuned
model, we calculated the entropy of the conditional probabilities at each position across natural IS605 loci
(Figures 4E and S8). Although the model was trained without any explicit labeling of MGE boundaries, the
entropy signal indicates that the model is learning a representation of these boundaries, with a sharp and
sustained increase in entropy corresponding with the 3′ end of the element in particular. Taken together,
these results indicate that the finetuned model can generate diverse IS605 systems with coherent protein and
RNA sequences, and that the model is learning important features of these elements that could be repurposed
for improved functional annotation.

2.7. Predicting gene essentiality with long genomic context

Beyond the molecular or systems level, we designed Evo to be capable of analyzing whole genomes. We
conducted a second stage of pretraining using the 8k-pretrained Evo model as the base model, training it on
sequences of 131k tokens (Figure 5A) with prepended species-level special tokens. This pretraining stage used
data from GTDB and a subset of IMG/VR that excludes eukaryotic viruses (Figures 1C and S1). SeeMethods
for additional details related to context extension. Importantly, Evo maintains single-nucleotide resolution
at its 131k context size, which is important because changes involving small numbers of base pairs can still
dramatically affect a whole organism’s phenotype. For example, even a single-nucleotide mutation in an
essential gene can be incompatible with life if it disrupts that gene’s expression or function. Identifying these
essential genes is important for understanding the fundamental biology of an organism and for identifying
genes in pathogenic organisms that could be the targets of inhibitory drugs (Rocha and Danchin, 2003).

To this end, we evaluated Evo’s ability to predict gene essentiality solely based on mutations to the genome
sequence. We conducted an experiment in which we inserted premature stop codons at the beginning of each
coding sequence in a given organism’s genome and measured the effects of these changes on Evo’s likelihood
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Figure 4 | Finetuning on IS200/IS605 sequences enables generative design of transposable biological
systems. (A) IS605 group systems are a group of MGEs that belong to the IS200/IS605 family and encode
a Y1-HuH transposase encoded by the TnpA coding sequence and a TnpB-𝜔RNA complex that performs DNA
cleavage. Our design task is to produce sequences that contain these protein and ncRNA components. (B) We
finetuned Evo, following its initial 8k pretraining phase, on ∼2 kb-length sequences containing IS200/IS605
systems. (C) Histograms representing the distribution of percentage identity of generated loci that contained a
predicted TnpA and TnpB coding sequences. The closest matching member of the training set as identified by
MMseqs2 was compared with the generated sequence byMAFFT alignment. (D) Example of a generated IS605
element. Showing TnpA and TnpB protein structures as predicted by ESMFold (blue) aligned to homologous
PDB structures (gray) and the secondary structure of a predicted 𝜔RNA. (E) Showing the entropy of the
conditional probabilities at each position across three natural IS605 loci. TnpA (short) and TnpB (long) coding
sequences are shown in blue, predicted 𝜔RNA boundaries are shown in purple, and the start and end of the
complete element is shown with black bars.
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Figure 5 | Evo performs zero-shot gene essentiality prediction across diverse bacterial and phage
genomes. (A) For genome-scale prediction and generation tasks, we first pretrained Evo on sequences with
8k tokens and then extended its context window size in a second pretraining phase to sequences of 131k
tokens. (B) We performed an in-silico, genome-wide mutagenesis screen in which we introduced premature
stop codons at each coding sequence in a genome. We computed the language model (LM) likelihood of the
mutated gene sequence plus some amount of additional genomic context (up to 66 kb). We then took the
ratio of this likelihood to the likelihood of the unmutated sequence. We tested whether these likelihood ratios
would be predictive of gene essentiality. (C) Violin and strip plots of the distribution of the strength of gene
essentiality prediction across 58 studies (each dot corresponds to a different study), in which each study con-
ducted a genome-wide essentiality screen in a bacterial (𝑁 = 56) or phage (𝑁 = 2) species. We measured
predictive performance as the AUROC in which the LM likelihood ratio is used to predict a binary label of
“essential” or “nonessential.” “Gene only context” indicates that the model is provided with only the gene se-
quence and no additional flanking genomic context. “8k context” and “66k context” indicate that the LM is
provided with the gene sequence and flanking genomic context up to a total of 8k or 66k tokens, respectively.
Evo has some predictive performance with gene only context, has vastly improved performance from gene-
only to 8k context, and some outlier improvements from 8k to 66 context. (D) Histograms representing the
distributions of the log of the likelihood ratios (“Evo score”) for the essential genes (blue) and the nonessential
genes (yellow) in two genomes: lambda phage (top) and Pseudomonas aeruginosa (bottom). These results are
based on providing Evo with 66k context.
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with respect to the likelihood of the wildtype sequence (Figure 5B). When computing the changes to the
mutant versus wildtype sequences, we evaluated Evo on the gene sequence alone (“gene only context”), or
the gene sequence with flanking context up to a total of 8k tokens (“8k context”) or 66k tokens (“66k context”)
(Methods). We hypothesized that mutations to essential genes would result in larger, more negative changes
in log-likelihood compared to mutations to non-essential genes, allowing us to predict gene essentiality.

On a dataset of 56 whole-genome essentiality studies in bacteria from the DEG database (Zhang, 2004)
and two whole-genome essentiality studies in phage from (Piya et al., 2023), we observed that the changes
in Evo log-likelihood with 66k context are significantly predictive (Bonferroni-corrected permutation-based
𝑃 < 0.05) of gene essentiality in 43 out of 58 genomes. We also observed that providing the model with
additional genomic context beyond the gene sequence results in a substantial improvement in performance,
especially from gene only context to 8k context. From 8k to 66k context, the average predictive performance
is essentially equivalent, but the range does increase due to improvement in outlier examples (Figures 5C and
S9A). With 8k context, the model most likely has access to enough of the genome to improve its prediction of
mutational effects on organism function, whereas 66k context provides new, helpful information in only some
cases. For a few genomes, the zero-shot performance with 66k context is notably strong, with an AUROC of
0.86 on lambda phage essentiality data (Piya et al., 2023) and an AUROC of 0.81 on Pseudomonas aeruginosa
essentiality data (Turner et al., 2015) (Figure 5D).

Evo is also able to predict essentiality when using different in-silico mutagenesis strategies, such as varying
the number of stop codons inserted, or deleting the gene sequence entirely (Figure S9B; Methods), though
we did not attempt an exhaustive search of the best prompting strategy for this task. GenSLM, a codon
language model that had mild predictive performance of mutational effects on single-gene protein function
(Figure 2B), could not perform this zero-shot prediction task (Figure 5C). We also observed that a gene’s
position in the genome is not predictive of essentiality, indicating that trivial positional positional biases do
not contribute to prediction performance (Figure S9B). Together, these results demonstrate that Evo can
predict mutational effects at a whole-organism level across many bacterial and phage species, without any
explicit genome annotations, task-specific training data, or functional labels. In contrast to protein or codon
language models, Evo enables an understanding of gene function within a broader genomic context.

2.8. Generating DNA sequences at genome scale

Given Evo’s generative capabilities, we were interested in testing its generation quality at long sequence lengths
without additional finetuning. By doing so, we can better understand the patterns and the level of detail
learned by the model, which helps us determine the model’s capabilities and limitations. We used Evo to
sample twenty sequences each containing ∼650 kb, representing about five times the model’s context length
of 131 kb. For comparison, the smallest “minimal” bacterial genomes are about 580 kb in length (Blanchard
and Bébéar, 2011). We prompted the model to generate bacterial genomes using the species-level tokens in
the training dataset (Figure 6A). To analyze how well these generations recapitulate natural genomes, we
used CheckM (Parks et al., 2015), a tool originally developed to assess the quality of bacterial DNA sequenced
from nature. CheckM calculates statistics such as the density of coding sequences in the genome and the
presence of key marker genes that are found in nearly all prokaryotes, which we used to determine how well
our generated sequences mirror key characteristics of natural genomes.

Notably, the coding density of sequences generated by Evo is nearly as high on average as the density of
coding sequences found in natural genomes, and is substantially higher than the coding density of random
sequences (Figure 6B). Importantly, when visualized, both natural and generated sequences display simi-
lar patterns of coding organization (Figure 6C), with sequences in close proximity typically found with the
same strand orientation. In bacteria, these closely linked groups of coding sequences typically correspond
to functionally tied gene clusters or operons. When using ESMFold to obtain protein structure predictions
corresponding to these coding sequences, almost all showed some predicted secondary structure and globular
folds (Figures 6D, 6E, and S10). Some proteins also showed structural similarity to natural proteins involved
in known molecular functions as annotated by Gene Ontology (GO) (Figures 6D and 6E). However, many of
these structure predictions are of low confidence and have limited structural matches to any entry in a repre-
sentative database of naturally occurring proteins (Figure S10). The generated sequences also do not contain
many highly conserved marker genes that typically indicate complete genomes. Across all of our generated
sequences representing ∼13 megabases, Evo sampled 18 tRNA sequences (compared to 35 tRNAs in the ∼580

12



Figure 6 | Evo generates genome-scale sequences with dense coding architecture. (A) We prompted
Evo with species-level tokens used during the second pretraining stage. We use bacterial species prompts
and generate sequences of ∼650 kb in length. (B) Histograms depicting the distribution of coding density
scores among 131 kb crops of sequences generated by Evo (“Evo generated”), sequences from natural bacteria
(“natural genomes”), or sequences in which the four base pairs were sampled uniformly at random (“random
sequences”). (C) Arrow plots depicting the organization of coding sequences on an example 131 kb sequence
generated by Evo, derived from a natural genome, or sampled randomly. Coding sequences are depicted as
arrows in which the horizontal length of the arrow corresponds to the genomic interval and the direction of
the arrow indicates the strand. The top and bottom rows of arrows indicate the 5′-to-3′ and 3′-to-5′ strands,
respectively, and the Evo-generated sequence was designated as the 5′-to-3′ strand. Both Evo-generated and
natural genomes exhibit operon-like structure in which clusters of co-located genes are on the same strand. (D,
E) Example generated sequences are represented as arrow plots as in (C). Below these arrow plots are ESMFold
structure predictions of all protein coding sequences from 100 through 1024 amino acids in length as identified
by Prodigal. Structure predictions are aligned to natural proteins, which are then mapped to associated GO
molecular function terms (Methods). The largest GO categories are displayed as clusters alongside a large
cluster containing all other proteins.
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kb genome ofM. genitalium) and no rRNAs, as detected by the programs tRNAscan-SE (Chan and Lowe, 2019)
and barrnap (Seemann, 2018), respectively.

These results suggest that Evo can generate genome sequences containing plausible high-level genomic
organization at an unprecedented scale without extensive prompt engineering or finetuning. These samples
represent a “blurry image” of a genome that contains key characteristics but lacks the finer-grained details
typical of natural genomes. This is consistent with findings involving generative models in other domains,
such as natural language or image generation. For example, directly sampling from a large natural language
model typically produces sequences that are grammatically correct yet locally biased toward simpler sentence
constructions and that are globally incoherent, especially at long lengths. Promisingly, in these domains,
algorithmic techniques have emerged to improve the quality of generations compared to sampling from the
pretrained model alone (Wei et al., 2022; Ouyang et al., 2022; Rafailov et al., 2024). The baseline generation
quality observed for pretrained Evo suggests that Evo is also amenable to these techniques.

3. Discussion

Evo is a genomic foundation model trained on hundreds of billions of DNA tokens across the evolutionary diver-
sity of prokaryotic life, capable of predicting and generating DNA sequences at the scale of individual molecules,
molecular complexes, biological systems, and even whole genomes. Based on a state-of-the art hybrid model
architecture, StripedHyena, Evo enables single-nucleotide resolution language modeling at a context length of
131k. We conducted the first scaling laws analysis of DNA pretraining across several architectures, where we
observed StripedHyena outperforming several baseline architectures, including the Transformer architecture,
at each level of scale. Evo accurately performed zero-shot prediction across diverse fitness or expression pre-
diction tasks on proteins, ncRNAs, or regulatory DNA that matches or outperforms specialized models, while
also understanding which genes are essential to organismal fitness. Evo is also a generative model, which we
leverage to sample CRISPR-Cas proteins and their noncoding guide RNAs, multi-gene transposable systems,
and ∼650 kb sequences that recapitulate the coding organization of real genomes. We make open-source code
and models for Evo publicly available at https://github.com/evo-design/evo.

A model capable of genome-scale design holds great potential to advance therapeutic discovery, sustain-
ability, and our understanding of fundamental biology, but simultaneously raises biosafety and ethical consid-
erations. The Global Alliance for Genomics and Health (GA4GH) (Rehm et al., 2021) has developed principles
for monitoring genetic engineering technologies and could provide a foundation for transparency, account-
ability, and shared responsibility. A proactive discussion involving the scientific community, security experts,
and policymakers is imperative to prevent misuse and to promote the development of defensive strategies to
counteract existing or new biological threats. International cooperation is needed to establish clear guide-
lines and monitoring systems that ensure such technologies are employed for the benefit of humanity. We
open source the model to promote transparency and begin a dialogue with the scientific community and other
stakeholders. We also apply the precaution of excluding eukaryotic viruses from our pretraining dataset. We
include an extended discussion on ethical considerations in a supplementary Safety and ethics discussion.

Despite the remarkable capabilities of this first-generation DNA foundation model, a number of technical
limitations and challenges remain. We pretrained Evo on a dataset of 300B prokaryotic tokens which repre-
sents a miniscule portion of petabytes of publicly available genomic data. Because our model is trained only on
prokaryotic data, our ability to predict functional effects of mutations on human protein fitness is limited. Nat-
ural language models often struggle to maintain coherent and diverse generation over long sequences, and
Evo can demonstrate similar properties. For example, we observed that more novel CRISPR-Cas sequences
were sampled at relatively low frequency and prompting on special tokens had moderate controllability, oc-
casionally generating a Cas12 protein when prompted with a Cas9 token. At the genome-scale, Evo generates
hundreds of kilobases that demonstrate a high-level understanding of genome organization, but struggles to
include key marker genes such as full tRNA-encoding repertoires. These limitations mirror the constraints
of natural language models, which have been improved over time with increased scale, labeled data, prompt
engineering, and alignment with human preferences (Kaplan et al., 2020; Ouyang et al., 2022; Wei et al.,
2022; Kojima et al., 2022; Rafailov et al., 2024). We expect a similar trajectory for models of DNA.

DNA modeling at this scale and resolution lays the groundwork for a host of research directions. We expect
that Evo will benefit from additional scale, longer context length, and more diverse pretraining data. Given the

14

https://github.com/evo-design/evo


success of language-model-guided directed evolution of proteins (Hie et al., 2024), genomic language models
may also help guide the directed evolution of multi-gene biological systems. Similarly, the co-evolutionary
information contained in these models could improve molecular structure prediction in a multi-gene context
(Jumper et al., 2021; Lin et al., 2023). Properties of systems biology may emerge as these models improve,
such as fitness effects of combinatorial gene interactions or the prediction of functional operon linkages. With
better conditioning or prompt engineering, Evo could form the basis of a next-generation sequence search
algorithm by enabling metagenomic mining at a relational or a semantic level rather than extracting literal
sequences from existing organisms. Beyond prokaryotes, the incorporation of eukaryotic genomes into Evo
will need to consider the far higher complexity of these genomes and require substantial resource investment
in engineering, compute, and safety-related model alignment. Combined with advances in large-scale genome
modification (Durrant et al., 2024), Evo helps expand the scope of biological engineering and design to the
scale of whole genomes.
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4. Code and data availability

Code and models related to this study are publicly available at https://github.com/evo-design/evo.

We used the following datasets for pretraining:

• Bacterial and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1 (Parks et al.,
2015).

• Curated prokaryotic viruses from the IMG/VR v4 database (Camargo et al., 2023).
• Plasmid sequences from the IMG/PR database (Camargo et al., 2024).

In addition to the above datasets, we also used portions of the following datasets for finetuning:

• NCBI RefSeq (O’Leary et al., 2016).
• UHGG (Almeida et al., 2021).
• JGI IMG (Chen et al., 2021).
• The Gut Phage Database (Camarillo-Guerrero et al., 2021).
• The Human Gastrointestinal Bacteria Genome Collection (Forster et al., 2019).
• MGnify (Mitchell et al., 2020).
• Youngblut et al. (2020) animal gut metagenomes.
• MGRAST (Meyer et al., 2008).
• Tara Oceans samples (Sunagawa et al., 2015).

Additional details on these datasets are provided in Methods.

5. Acknowledgements

We thank Elijah Chanakira, Dave Driggers, Richard Dugan, Helmut Fritz, Marco Iskender, Adeesh Jain, Mike
LaPan, Sean Marrs, Sigalit Perelson, Randy Rizun, Jason Rojas, and Delaney Ugelstad for assistance with
computational infrastructure. We thank Samuel Sternberg and Chance Meers for providing covariance models
to identify diverse 𝜔RNAs. We thank Jessica Adkins, Joana Carvalho, Dan Fu, Jared Dunnmon, Yunha Hwang,
Julia Kazaks, Gautam Machiraju, April Pawluk, Christina Theodoris, Ben Viggiano, and Alden Woodrow for
helpful discussions and assistance with manuscript preparation.P.D.H. acknowledges funding support from
the Arc Institute, Rainwater Foundation, Curci Foundation, Rose Hill Innovators Program, V. and N. Khosla,
S. Altman, and anonymous gifts to the Hsu Lab. B.L.H. acknowledges funding support from Varun Gupta and
Raymond Tonsing.

6. Author Contributions

E.N., P.D.H., and B.L.H conceived the project. P.D.H. and B.L.H. supervised the project. E.N., M.P., and A.W.T.
designed the model architecture. M.G.D. and B.L.H. curated and processed the pretraining and finetuning
datasets. M.P. implemented the optimized training and generation infrastructure. E.N., A.W.T., and B.L.H.
contributed to the optimized training and generation infrastructure. E.N., M.P., and A.W.T. implemented and
carried out the scaling laws analysis. E.N., M.P., A.W.T., and B.L.H. evaluated the pretrained model. E.N. and
B.L.H. conducted model finetuning. B.K. and P.D.H. sampled or analyzed CRISPR-Cas generations. M.G.D. and
B.L.H. sampled or analyzed the IS200/IS605 generations. B.L.H. conducted the gene essentiality analysis. M.P.
and B.L.H. conducted genome-scale sampling and analysis. M.P., A.W.T., and B.L.H. implemented the public
Evo codebase. M.Y.N., A.L., and T.H-B. conducted the ethics and safety investigation and discussion. E.N.,
M.P., M.G.D., P.D.H., and B.L.H wrote the first draft of the manuscript. All authors wrote the final draft of the
manuscript.

7. Competing Interests

M.P. is an employee of TogetherAI. M.G.D. acknowledges outside interest in Stylus Medicine. C.R. acknowl-
edges outside interest in Factory andGoogle Ventures. P.D.H. acknowledges outside interest in StylusMedicine,

16

https://github.com/evo-design/evo


Spotlight Therapeutics, Circle Labs, Arbor Biosciences, Varda Space, Vial Health, and Veda Bio, where he holds
various roles including as co-founder, director, scientific advisory board member, or consultant. B.L.H acknowl-
edges outside interest in Prox Biosciences as a scientific co-founder. All other authors declare no competing
interests.

17



References

B. Adkar, A. Tripathi, A. Sahoo, K. Bajaj, D. Goswami, P. Chakrabarti, M. Swarnkar, R. Gokhale, and
R. Varadarajan. Protein model discrimination using mutational sensitivity derived from deep sequencing.
Structure, 20:371–381, 2 2012. ISSN 09692126. doi: 10.1016/j.str.2011.11.021.

J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai. Gqa: Training generalized
multi-query transformer models from multi-head checkpoints. arXiv preprint arXiv:2305.13245, 2023.

A. Almeida, S. Nayfach, M. Boland, F. Strozzi, M. Beracochea, Z. J. Shi, K. S. Pollard, E. Sakharova, D. H. Parks,
P. Hugenholtz, N. Segata, N. C. Kyrpides, and R. D. Finn. A unified catalog of 204,938 reference genomes
from the human gut microbiome. Nat. Biotechnol., 39(1):105–114, Jan. 2021.

H. Altae-Tran, S. Kannan, F. E. Demircioglu, R. Oshiro, S. P. Nety, L. J. McKay, M. DlakiÄ‡, W. P. Inskeep,
K. S. Makarova, R. K. Macrae, E. V. Koonin, and F. Zhang. The widespread IS200/IS605 transposon family
encodes diverse programmable rna-guided endonucleases. Science, 374:57–65, 10 2021. ISSN 0036-8075.
doi: 10.1126/science.abj6856.

H. Altae-Tran, S. A. Shmakov, K. S. Makarova, Y. I. Wolf, S. Kannan, F. Zhang, and E. V. Koonin. Diversity,
evolution, and classification of the RNA-guided nucleases TnpB and cas12. Proc. Natl. Acad. Sci. U. S. A.,
120(48):e2308224120, Nov. 2023.

J. O. L. Andreasson, A. Savinov, S. M. Block, andW. J. Greenleaf. Comprehensive sequence-to-functionmapping
of cofactor-dependent RNA catalysis in the glms ribozyme. Nat. Commun., 11(1):1663, Apr. 2020.

S. Arora, S. Eyuboglu, A. Timalsina, I. Johnson, M. Poli, J. Zou, A. Rudra, and C. Ré. Zoology: Measuring and
improving recall in efficient language models. arXiv preprint arXiv:2312.04927, 2023.

Z. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael, J. Jumper,
P. Kohli, and D. R. Kelley. Effective gene expression prediction from sequence by integrating long-range in-
teractions. Nature Methods, 18:1196–1203, 10 2021. ISSN 1548-7091. doi: 10.1038/s41592-021-01252-x.

K. Badal, C. M. Lee, and L. J. Esserman. Guiding principles for the responsible development of artificial
intelligence tools for healthcare. Communications Medicine, 3:47, 4 2023. ISSN 2730-664X. doi: 10.1038/
s43856-023-00279-9.

D. Baker and G. Church. Protein design meets biosecurity. Science, 383(6681):349–349, 2024.

G. Benegas, C. Albors, A. J. Aw, C. Ye, and Y. S. Song. GPN-MSA: an alignment-based dna language
model for genome-wide variant effect prediction. bioRxiv, page 2023.10.10.561776, 1 2023. doi:
10.1101/2023.10.10.561776. URL http://biorxiv.org/content/early/2023/10/11/2023.10.
10.561776.abstract.

S. Bhattamishra, A. Patel, P. Blunsom, and V. Kanade. Understanding in-context learning in transformers and
llms by learning to learn discrete functions. arXiv preprint arXiv:2310.03016, 2023.

A. Blanchard and C. Bébéar. The evolution of Mycoplasma genitalium. Annals of the New York Academy of
Sciences, 1230, 8 2011. ISSN 0077-8923. doi: 10.1111/j.1749-6632.2011.06418.x.

C. Bland, T. L. Ramsey, F. Sabree, M. Lowe, K. Brown, N. C. Kyrpides, and P. Hugenholtz. CRISPR recognition
tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC
Bioinformatics, 8:209, June 2007.

A. P. Camargo, S. Nayfach, I.-M. A. Chen, K. Palaniappan, A. Ratner, K. Chu, S. Ritter, T. B. K. Reddy, S. Mukher-
jee, F. Schulz, L. Call, R. Neches, T. Woyke, N. Ivanova, E. Eloe-Fadrosh, N. Kyrpides, and S. Roux. IMG/VR
v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, tax-
onomic, and ecological metadata. Nucleic Acids Research, 51:D733–D743, 1 2023. ISSN 0305-1048. doi:
10.1093/nar/gkac1037.

18

http://biorxiv.org/content/early/2023/10/11/2023.10.10.561776.abstract
http://biorxiv.org/content/early/2023/10/11/2023.10.10.561776.abstract


A. P. Camargo, L. Call, S. Roux, S. Nayfach, M. Huntemann, K. Palaniappan, A. Ratner, K. Chu, S. Mukherjeep,
T. B. K. Reddy, I.-M. Chen, N. Ivanova, E. Eloe-Fadrosh, T. Woyke, D. Baltrus, S. Castañeda-Barba, F. de la
Cruz, B. E. Funnell, J. J. Hall, A. Mukhopadhyay, E. C. Rocha, T. Stalder, E. Top, and N. Kyrpides. IMG/PR:
a database of plasmids from genomes and metagenomes with rich annotations and metadata. Nucleic Acids
Research, 52:D164–D173, 1 2024. ISSN 0305-1048. doi: 10.1093/nar/gkad964.

L. F. Camarillo-Guerrero, A. Almeida, G. Rangel-Pineros, R. D. Finn, and T. D. Lawley. Massive expansion of
human gut bacteriophage diversity. Cell, 184(4):1098–1109.e9, Feb. 2021.

P. P. Chan and T. M. Lowe. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences, pages 1–14. 2019.
doi: 10.1007/978-1-4939-9173-0_1.

M. Chandler, M. Gellert, A. M. Lambowitz, P. A. Rice, and S. B. Sandmeyer. Mobile DNA III. John Wiley &
Sons, July 2020.

T. A. Chang and B. K. Bergen. Language model behavior: A comprehensive survey. Mar. 2023.

I.-M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, J. Huang, M. Huntemann, P. Hajek, S. Ritter, N. Varghese,
R. Seshadri, S. Roux, T. Woyke, E. A. Eloe-Fadrosh, N. N. Ivanova, and N. C. Kyrpides. The IMG/M data
management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res., 49(D1):
D751–D763, Jan. 2021.

J. Chen, Z. Hu, S. Sun, Q. Tan, Y. Wang, Q. Yu, L. Zong, L. Hong, J. Xiao, T. Shen, I. King, and Y. Li. Interpretable
RNA foundation model from unannotated data for highly accurate rna structure and function predictions,
2022.

S. Chen, S. Wong, L. Chen, and Y. Tian. Extending context window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595, 2023.

H. Dalla-Torre, L. Gonzalez, J. Mendoza-Revilla, N. L. Carranza, A. H. Grzywaczewski, F. Oteri, C. Dallago,
E. Trop, B. P. de Almeida, H. Sirelkhatim, G. Richard, M. Skwark, K. Beguir, M. Lopez, and T. Pierrot. The Nu-
cleotide Transformer: Building and evaluating robust foundation models for human genomics. bioRxiv, page
2023.01.11.523679, 1 2023. doi: 10.1101/2023.01.11.523679. URL http://biorxiv.org/content/
early/2023/09/19/2023.01.11.523679.abstract.

L. F. DaSilva, S. Senan, Z. M. Patel, A. J. Reddy, S. Gabbita, Z. Nussbaum, C. M. V. CÃ3rdova, A. Wenteler,
N. Weber, T. M. Tunjic, T. A. Khan, Z. Li, C. Smith, M. Bejan, L. K. Louis, P. Cornejo, W. Connell, E. S.
Wong, W. Meuleman, and L. Pinello. Dna-diffusion: Leveraging generative models for controlling chromatin
accessibility and gene expression via synthetic regulatory elements. bioRxiv, page 2024.02.01.578352, 1
2024. doi: 10.1101/2024.02.01.578352. URL http://biorxiv.org/content/early/2024/02/01/
2024.02.01.578352.abstract.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional networks. In
International conference on machine learning, pages 933–941. PMLR, 2017.

T. Dobzhansky. Genetics and the Origin of Species. Columbia University Press, 1951.

J. Domingo, G. Diss, and B. Lehner. Pairwise and higher-order genetic interactions during the evolution of a
tRNA. Nature, 558(7708):117–121, June 2018.

M. G. Durrant, M. M. Li, B. A. Siranosian, S. B. Montgomery, and A. S. Bhatt. A bioinformatic analysis of
integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host & Microbe, 27:
140–153.e9, 1 2020. ISSN 19313128. doi: 10.1016/j.chom.2019.10.022.

M. G. Durrant, N. T. Perry, J. J. Pai, A. R. Jangid, J. S. Athukoralage, M. Hiraizumi, J. P. McSpedon, A. Pawluk,
H. Nishimasu, S. Konermann, and P. D. Hsu. Bridge rnas direct modular and programmable recombination
of target and donor dna. bioRxiv, page 2024.01.24.577089, 1 2024. doi: 10.1101/2024.01.24.577089.
URL http://biorxiv.org/content/early/2024/01/26/2024.01.24.577089.abstract.

G. M. Findlay, R. M. Daza, B. Martin, M. D. Zhang, A. P. Leith, M. Gasperini, J. D. Janizek, X. Huang, L. M.
Starita, and J. Shendure. Accurate classification of brca1 variants with saturation genome editing. Nature,
562:217–222, 10 2018. ISSN 0028-0836. doi: 10.1038/s41586-018-0461-z.

19

http://biorxiv.org/content/early/2023/09/19/2023.01.11.523679.abstract
http://biorxiv.org/content/early/2023/09/19/2023.01.11.523679.abstract
http://biorxiv.org/content/early/2024/02/01/2024.02.01.578352.abstract
http://biorxiv.org/content/early/2024/02/01/2024.02.01.578352.abstract
http://biorxiv.org/content/early/2024/01/26/2024.01.24.577089.abstract


R. D. Finn, J. Clements, and S. R. Eddy. HMMER web server: interactive sequence similarity searching. Nucleic
Acids Res., 39(Web Server issue):W29–37, July 2011.

E. Firnberg, J. W. Labonte, J. J. Gray, and M. Ostermeier. A comprehensive, high-resolution map of a gene’s
fitness landscape. Molecular Biology and Evolution, 31:1581–1592, 6 2014. ISSN 1537-1719. doi: 10.1093/
molbev/msu081.

V. Fishman, Y. Kuratov, M. Petrov, A. Shmelev, D. Shepelin, N. Chekanov, O. Kardymon, and M. Burtsev.
GENA-LM: A family of open-source foundational dna language models for long sequences. bioRxiv, page
2023.06.12.544594, 1 2023. doi: 10.1101/2023.06.12.544594. URL http://biorxiv.org/content/
early/2023/11/01/2023.06.12.544594.abstract.

S. C. Forster, N. Kumar, B. O. Anonye, A. Almeida, E. Viciani, M. D. Stares, M. Dunn, T. T. Mkandawire, A. Zhu,
Y. Shao, L. J. Pike, T. Louie, H. P. Browne, A. L. Mitchell, B. A. Neville, R. D. Finn, and T. D. Lawley. A human
gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol., 37(2):
186–192, Feb. 2019.

D. Fu, S. Arora, J. Grogan, I. Johnson, E. S. Eyuboglu, A. Thomas, B. Spector, M. Poli, A. Rudra, and C. Ré.
Monarchmixer: A simple sub-quadratic gemm-based architecture. Advances in Neural Information Processing
Systems, 36, 2024.

D. Y. Fu, T. Dao, K. K. Saab, A. W. Thomas, A. Rudra, and C. Ré. Hungry hungry hippos: Towards language
modeling with state space models. arXiv preprint arXiv:2212.14052, 2022.

C. W. Garvie, X. Wu, M. Papanastasiou, S. Lee, J. Fuller, G. R. Schnitzler, S. W. Horner, A. Baker, T. Zhang, J. P.
Mullahoo, L. Westlake, S. H. Hoyt, M. Toetzl, M. J. Ranaghan, L. de Waal, J. McGaunn, B. Kaplan, F. Piccioni,
X. Yang, M. Lange, A. Tersteegen, D. Raymond, T. A. Lewis, S. A. Carr, A. D. Cherniack, C. T. Lemke, M. Mey-
erson, and H. Greulich. Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12
RNase. Nature Communications, 12:4375, 7 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24495-w.

G. Gasiunas, J. K. Young, T. Karvelis, D. Kazlauskas, T. Urbaitis, M. Jasnauskaite, M. M. Grusyte, S. Paulraj, P.-
H. Wang, Z. Hou, S. K. Dooley, M. Cigan, C. Alarcon, N. D. Chilcoat, G. Bigelyte, J. L. Curcuru, M. Mabuchi,
Z. Sun, R. T. Fuchs, E. Schildkraut, P. R. Weigele, W. E. Jack, G. B. Robb, Česlovas Venclovas, and V. Siksnys.
A catalogue of biochemically diverse crispr-cas9 orthologs. Nature Communications, 11:5512, 11 2020. ISSN
2041-1723. doi: 10.1038/s41467-020-19344-1.

A. O. Giacomelli, X. Yang, R. E. Lintner, J. M. McFarland, M. Duby, J. Kim, T. P. Howard, D. Y. Takeda, S. H. Ly,
E. Kim, H. S. Gannon, B. Hurhula, T. Sharpe, A. Goodale, B. Fritchman, S. Steelman, F. Vazquez, A. Tsher-
niak, A. J. Aguirre, J. G. Doench, F. Piccioni, C. W. M. Roberts, M. Meyerson, G. Getz, C. M. Johannessen,
D. E. Root, and W. C. Hahn. Mutational processes shape the landscape of tp53 mutations in human cancer.
Nature Genetics, 50:1381–1387, 10 2018. ISSN 1061-4036. doi: 10.1038/s41588-018-0204-y.

A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neuböck, and I. L. Hofacker. The Vienna RNA websuite. Nucleic
Acids Res., 36(Web Server issue):W70–4, July 2008.

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

A. Gu, K. Goel, A. Gupta, and C. Ré. On the parameterization and initialization of diagonal state space models.
Advances in Neural Information Processing Systems, 35:35971–35983, 2022.

A. Gupta, A. Gu, and J. Berant. Diagonal state spaces are as effective as structured state spaces. Advances in
Neural Information Processing Systems, 35:22982–22994, 2022.

M. P. Guy, D. L. Young, M. J. Payea, X. Zhang, Y. Kon, K. M. Dean, E. J. Grayhack, D. H. Mathews, S. Fields, and
E. M. Phizicky. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay
by high-throughput in vivo analysis. Genes Dev., 28(15):1721–1732, Aug. 2014.

20

http://biorxiv.org/content/early/2023/11/01/2023.06.12.544594.abstract
http://biorxiv.org/content/early/2023/11/01/2023.06.12.544594.abstract


E. J. Hayden, E. Ferrada, and A. Wagner. Cryptic genetic variation promotes rapid evolutionary adaptation in
an RNA enzyme. Nature, 474(7349):92–95, June 2011.

B. L. Hie, V. R. Shanker, D. Xu, T. U. J. Bruun, P. A. Weidenbacher, S. Tang, W. Wu, J. E. Pak, and P. S. Kim.
Efficient evolution of human antibodies from general protein language models. Nature Biotechnology, 42:
275–283, 2 2024. ISSN 1087-0156. doi: 10.1038/s41587-023-01763-2.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks,
J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022.

P. D. Hsu, E. S. Lander, and F. Zhang. Development and applications of CRISPR-Cas9 for genome engineering.
Cell, 157:1262–1278, 6 2014. ISSN 00928674. doi: 10.1016/j.cell.2014.05.010.

D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, and L. J. Hauser. Prodigal: prokaryotic gene
recognition and translation initiation site identification. BMC Bioinformatics, 11:119, 12 2010. ISSN 1471-
2105. doi: 10.1186/1471-2105-11-119.

J. B. Ingraham, M. Baranov, Z. Costello, K. W. Barber, W. Wang, A. Ismail, V. Frappier, D. M. Lord, C. Ng-Thow-
Hing, E. R. V. Vlack, S. Tie, V. Xue, S. C. Cowles, A. Leung, J. V. Rodrigues, C. L. Morales-Perez, A. M. Ayoub,
R. Green, K. Puentes, F. Oplinger, N. V. Panwar, F. Obermeyer, A. R. Root, A. L. Beam, F. J. Poelwijk, and
G. Grigoryan. Illuminating protein space with a programmable generative model. Nature, 623:1070–1078,
11 2023. ISSN 0028-0836. doi: 10.1038/s41586-023-06728-8.

H. Jacquier, A. Birgy, H. L. Nagard, Y. Mechulam, E. Schmitt, J. Glodt, B. Bercot, E. Petit, J. Poulain, G. Barnaud,
P.-A. Gros, and O. Tenaillon. Capturing the mutational landscape of the beta-lactamase TEM-1. Proceedings
of the National Academy of Sciences, 110:13067–13072, 8 2013. ISSN 0027-8424. doi: 10.1073/pnas.
1215206110.

Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. Dnabert: pre-trained bidirectional encoder representations from
transformers model for dna-language in genome. Bioinformatics, 37:2112–2120, 8 2021. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btab083.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Å½Ã-
dek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and
D. Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, 596:583–589, 8 2021.
ISSN 0028-0836. doi: 10.1038/s41586-021-03819-2.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

T. Karvelis, G. Druteika, G. Bigelyte, K. Budre, R. Zedaveinyte, A. Silanskas, D. Kazlauskas, ÄŒeslovas Ven-
clovas, and V. Siksnys. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease.
Nature, 599:692–696, 11 2021. ISSN 0028-0836. doi: 10.1038/s41586-021-04058-1.

K. Katoh, K. Misawa, K.-I. Kuma, and T. Miyata. MAFFT: a novel method for rapid multiple sequence alignment
based on fast fourier transform. Nucleic Acids Res., 30(14):3059–3066, July 2002.

E. D. Kelsic, H. Chung, N. Cohen, J. Park, H. H. Wang, and R. Kishony. RNA structural determinants of optimal
codons revealed by MAGE-Seq. Cell Systems, 3:563–571.e6, 12 2016. ISSN 24054712. doi: 10.1016/j.cels.
2016.11.004.

S. Kobori, Y. Nomura, A. Miu, and Y. Yokobayashi. High-throughput assay and engineering of self-cleaving
ribozymes by sequencing. Nucleic Acids Res., 43(13):e85, July 2015.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot reasoners.
Advances in Neural Information Processing Systems, 35:22199–22213, 2022.

E. V. Koonin and K. S. Makarova. Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the
Royal Society B: Biological Sciences, 374:20180087, 5 2019. ISSN 0962-8436. doi: 10.1098/rstb.2018.0087.

21



S. Kosuri, D. B. Goodman, G. Cambray, V. K. Mutalik, Y. Gao, A. P. Arkin, D. Endy, and G. M. Church. Com-
posability of regulatory sequences controlling transcription and translation in Escherichia coli. Proceedings
of the National Academy of Sciences, 110:14024–14029, 8 2013. ISSN 0027-8424. doi: 10.1073/pnas.
1301301110.

E. Kotler, O. Shani, G. Goldfeld, M. Lotan-Pompan, O. Tarcic, A. Gershoni, T. A. Hopf, D. S. Marks, M. Oren,
and E. Segal. A systematic p53 mutation library links differential functional impact to cancer mutation
pattern and evolutionary conservation. Molecular Cell, 71:178–190.e8, 7 2018. ISSN 10972765. doi:
10.1016/j.molcel.2018.06.012.

A. Lal, D. Garfield, T. Biancalani, and G. Eraslan. reglm: Designing realistic regulatory dna with autoregressive
language models. bioRxiv, page 2024.02.14.580373, 1 2024. doi: 10.1101/2024.02.14.580373. URL
http://biorxiv.org/content/early/2024/02/19/2024.02.14.580373.abstract.

W. B. Langdon, J. Petke, and R. Lorenz. Evolving better RNAfold structure prediction. In Genetic Programming,
pages 220–236. Springer International Publishing, 2018.

F.-Z. Li, A. P. Amini, Y. Yue, K. K. Yang, and A. X. Lu. Feature reuse and scaling: Understanding
transfer learning with protein language models. bioRxiv, page 2024.02.05.578959, 1 2024. doi: 10.
1101/2024.02.05.578959. URL http://biorxiv.org/content/early/2024/02/14/2024.02.05.
578959.abstract.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier neural
operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli, A. dos San-
tos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379:1123–1130, 3 2023. ISSN 0036-8075. doi:
10.1126/science.ade2574.

H. Liu, M. Zaharia, and P. Abbeel. Ring attention with blockwise transformers for near-infinite context. arXiv
preprint arXiv:2310.01889, 2023.

B. J. Livesey and J. A. Marsh. Updated benchmarking of variant effect predictors using deep mutational
scanning. Molecular Systems Biology, 19, 8 2023. ISSN 1744-4292. doi: 10.15252/msb.202211474.

R. Lorenz, S. H. Bernhart, C. H. zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler, and I. L. Hofacker.
Viennarna package 2.0. Algorithms for Molecular Biology, 6:26, 12 2011. ISSN 1748-7188. doi:
10.1186/1748-7188-6-26.

X. Ma, C. Zhou, X. Kong, J. He, L. Gui, G. Neubig, J. May, and L. Zettlemoyer. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

N. B. Macfarlane, J. Adams, E. L. Bennett, T. M. Brooks, J. A. Delborne, H. Eggermont, D. Endy, K. M. Esvelt,
B. Kolodziejczyk, T. Kuiken, M. J. Oliva, S. PeñaMoreno, L. Slobodian, R. B. Smith, D. Thizy, D. M. Tompkins,
W. Wei, and K. H. Redford. Direct and indirect impacts of synthetic biology on biodiversity conservation.
iScience, 25(11):105423, 2022. ISSN 2589-0042. doi: https://doi.org/10.1016/j.isci.2022.105423. URL
https://www.sciencedirect.com/science/article/pii/S2589004222016959.

A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. Olmos, C. Xiong, Z. Z.
Sun, R. Socher, J. S. Fraser, and N. Naik. Large language models generate functional protein sequences
across diverse families. Nature Biotechnology, 41:1099–1106, 8 2023. ISSN 1087-0156. doi: 10.1038/
s41587-022-01618-2.

S. Massaroli, M. Poli, D. Fu, H. Kumbong, R. Parnichkun, D. Romero, A. Timalsina, Q. McIntyre, B. Chen,
A. Rudra, et al. Laughing hyena distillery: Extracting compact recurrences from convolutions. Advances in
Neural Information Processing Systems, 36, 2024.

C. Meers, H. C. Le, S. R. Pesari, F. T. Hoffmann, M. W. G. Walker, J. Gezelle, S. Tang, and S. H. Sternberg.
Transposon-encoded nucleases use guide RNAs to promote their selfish spread. Nature, 622:863–871, 10
2023. ISSN 0028-0836. doi: 10.1038/s41586-023-06597-1.

22

http://biorxiv.org/content/early/2024/02/19/2024.02.14.580373.abstract
http://biorxiv.org/content/early/2024/02/14/2024.02.05.578959.abstract
http://biorxiv.org/content/early/2024/02/14/2024.02.05.578959.abstract
https://www.sciencedirect.com/science/article/pii/S2589004222016959


J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives. Language models enable zero-shot prediction of the
effects of mutations on protein function. Advances in Neural Information Processing Systems, 34, 2021.

F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E. M. Glass, M. Kubal, T. Paczian, A. Rodriguez, R. Stevens,
A. Wilke, J. Wilkening, and R. A. Edwards. The metagenomics RAST server - a public resource for the
automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9:386, Sept. 2008.

A. L. Mitchell, A. Almeida, M. Beracochea, M. Boland, J. Burgin, G. Cochrane, M. R. Crusoe, V. Kale, S. C.
Potter, L. J. Richardson, E. Sakharova, M. Scheremetjew, A. Korobeynikov, A. Shlemov, O. Kunyavskaya,
A. Lapidus, and R. D. Finn. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res., 48(D1):
D570–D578, Jan. 2020.

A. Mitrofanov, M. Ziemann, O. S. Alkhnbashi, W. R. Hess, and R. Backofen. CRISPRtracrRNA: robust approach
for CRISPR tracrRNA detection. Bioinformatics, 38:ii42–ii48, 9 2022. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btac466.

T. H. Morgan. Sex limited inheritance in drosophila. Science, 32:120–122, 7 1910. ISSN 0036-8075. doi:
10.1126/science.32.812.120.

S. Morin, G. Segafredo, M. Piccolis, A. Das, M. Das, N. Loffredi, A. Larbi, K. Mwamelo, E. Villanueva,
S. Nobre, and E. Burrone. Expanding access to biotherapeutics in low-income and middle-income coun-
tries through public health non-exclusive voluntary intellectual property licensing: considerations, require-
ments, and opportunities. The Lancet Global Health, 11:e145–e154, 1 2023. ISSN 2214109X. doi:
10.1016/S2214-109X(22)00460-0.

Nature Computational Science. The carbon footprint of computational research. Nature Computational Science,
3:659–659, 8 2023. ISSN 2662-8457. doi: 10.1038/s43588-023-00506-2.

E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 29(22):
2933–2935, Nov. 2013.

E. Nguyen, M. Poli, M. Faizi, A. Thomas, M.Wornow, C. Birch-Sykes, S. Massaroli, A. Patel, C. Rabideau, Y. Ben-
gio, et al. HyenaDNA: Long-range genomic sequence modeling at single nucleotide resolution. Advances in
Neural Information Processing Systems, 36, 2023.

M. W. Nirenberg and J. H. Matthaei. The dependence of cell-free protein synthesis in E. coli upon naturally
occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47:1588–1602,
10 1961. ISSN 0027-8424. doi: 10.1073/pnas.47.10.1588.

P. Notin, M. Dias, J. Frazer, J. M. Hurtado, A. N. Gomez, D. Marks, and Y. Gal. Tranception: protein fitness
prediction with autoregressive transformers and inference-time retrieval. pages 16990–17017, 2022.

P. Notin, A. W. Kollasch, D. Ritter, L. van Niekerk, S. Paul, H. Spinner, N. Rollins, A. Shaw, R. Weitz-
man, J. Frazer, M. Dias, D. Franceschi, R. Orenbuch, Y. Gal, and D. S. Marks. ProteinGym: Large-scale
benchmarks for protein design and fitness prediction. bioRxiv, page 2023.12.07.570727, 1 2023. doi:
10.1101/2023.12.07.570727. URL http://biorxiv.org/content/early/2023/12/08/2023.12.
07.570727.abstract.

N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-
White, D. Ako-Adjei, A. Astashyn, A. Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi, E. Cox,
O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft, E. Hatcher, W. Hlavina, V. S. Joardar, V. K.
Kodali, W. Li, D. Maglott, P. Masterson, K. M. McGarvey, M. R. Murphy, K. O’Neill, S. Pujar, S. H. Rangwala,
D. Rausch, L. D. Riddick, C. Schoch, A. Shkeda, S. S. Storz, H. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E.
Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova, M. DiCuccio, P. Kitts,
T. D. Murphy, and K. D. Pruitt. Reference sequence (RefSeq) database at ncbi: current status, taxonomic
expansion, and functional annotation. Nucleic Acids Research, 44:D733–D745, 1 2016. ISSN 0305-1048.
doi: 10.1093/nar/gkv1189.

A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resurrecting recurrent neural
networks for long sequences. arXiv preprint arXiv:2303.06349, 2023.

23

http://biorxiv.org/content/early/2023/12/08/2023.12.07.570727.abstract
http://biorxiv.org/content/early/2023/12/08/2023.12.07.570727.abstract


L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and
R. Lowe. Training language models to follow instructions with human feedback, 2022.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson. Checkm: assessing the quality
of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25:1043–
1055, 7 2015. ISSN 1088-9051. doi: 10.1101/gr.186072.114.

D. H. Parks, M. Chuvochina, C. Rinke, A. J. Mussig, P.-A. Chaumeil, and P. Hugenholtz. GTDB: an ongo-
ing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and
complete genome-based taxonomy. Nucleic Acids Research, 50:D785–D794, 1 2022. ISSN 0305-1048. doi:
10.1093/nar/gkab776.

M. E. Peek. By any means necessary: why lowering insulin prices is relevant to racial health equity. The Lancet,
398:1783–1784, 11 2021. ISSN 01406736. doi: 10.1016/S0140-6736(21)02315-1.

J. Pilault, M. Fathi, O. Firat, C. Pal, P.-L. Bacon, and R. Goroshin. Block-state transformers. Advances in Neural
Information Processing Systems, 36, 2024.

J. N. Pitt and A. R. Ferré-D’Amaré. Rapid construction of empirical RNA fitness landscapes. Science, 330(6002):
376–379, Oct. 2010.

D. Piya, N. Nolan, M. L. Moore, L. A. R. Hernandez, B. F. Cress, R. Young, A. P. Arkin, and V. K. Mutalik.
Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLOS
Biology, 21:e3002416, 12 2023. ISSN 1545-7885. doi: 10.1371/journal.pbio.3002416.

M. Poli, S. Massaroli, E. Nguyen, D. Y. Fu, T. Dao, S. Baccus, Y. Bengio, S. Ermon, and C. Ré. Hyena hierarchy:
Towards larger convolutional language models. arXiv preprint arXiv:2302.10866, 2023a.

M. Poli, J. Wang, S. Massaroli, J. Quesnelle, R. Carlow, E. Nguyen, and A. Thomas. StripedHyena: Moving
Beyond Transformers with Hybrid Signal Processing Models, 12 2023b. URL https://github.com/
togethercomputer/stripedhyena.

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference optimization:
Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36,
2024.

H. L. Rehm, A. J. Page, L. Smith, J. B. Adams, G. Alterovitz, L. J. Babb, M. P. Barkley, M. Baudis, M. J. Beauvais,
T. Beck, J. S. Beckmann, S. Beltran, D. Bernick, A. Bernier, J. K. Bonfield, T. F. Boughtwood, G. Bourque, S. R.
Bowers, A. J. Brookes, M. Brudno, M. H. Brush, D. Bujold, T. Burdett, O. J. Buske, M. N. Cabili, D. L. Cameron,
R. J. Carroll, E. Casas-Silva, D. Chakravarty, B. P. Chaudhari, S. H. Chen, J. M. Cherry, J. Chung, M. Cline,
H. L. Clissold, R. M. Cook-Deegan, M. Courtot, F. Cunningham, M. Cupak, R. M. Davies, D. Denisko, M. J.
Doerr, L. I. Dolman, E. S. Dove, L. J. Dursi, S. O. Dyke, J. A. Eddy, K. Eilbeck, K. P. Ellrott, S. Fairley, K. A.
Fakhro, H. V. Firth, M. S. Fitzsimons, M. Fiume, P. Flicek, I. M. Fore, M. A. Freeberg, R. R. Freimuth, L. A.
Fromont, J. Fuerth, C. L. Gaff, W. Gan, E. M. Ghanaim, D. Glazer, R. C. Green, M. Griffith, O. L. Griffith, R. L.
Grossman, T. Groza, J. M. G. Auvil, R. Guigó, D. Gupta, M. A. Haendel, A. Hamosh, D. P. Hansen, R. K. Hart,
D. M. Hartley, D. Haussler, R. M. Hendricks-Sturrup, C. W. Ho, A. E. Hobb, M. M. Hoffman, O. M. Hofmann,
P. Holub, J. S. Hsu, J.-P. Hubaux, S. E. Hunt, A. Husami, J. O. Jacobsen, S. S. Jamuar, E. L. Janes, F. Jeanson,
A. Jené, A. L. Johns, Y. Joly, S. J. Jones, A. Kanitz, K. Kato, T. M. Keane, K. Kekesi-Lafrance, J. Kelleher,
G. Kerry, S.-S. Khor, B. M. Knoppers, M. A. Konopko, K. Kosaki, M. Kuba, J. Lawson, R. Leinonen, S. Li,
M. F. Lin, M. Linden, X. Liu, I. U. Liyanage, J. Lopez, A. M. Lucassen, M. Lukowski, A. L. Mann, J. Marshall,
M. Mattioni, A. Metke-Jimenez, A. Middleton, R. J. Milne, F. Molnár-Gábor, N. Mulder, M. C. Munoz-Torres,
R. Nag, H. Nakagawa, J. Nasir, A. Navarro, T. H. Nelson, A. Niewielska, A. Nisselle, J. Niu, T. H. Nyrönen, B. D.
O’Connor, S. Oesterle, S. Ogishima, V. O. Wang, L. A. Paglione, E. Palumbo, H. E. Parkinson, A. A. Philippakis,
A. D. Pizarro, A. Prlic, J. Rambla, A. Rendon, R. A. Rider, P. N. Robinson, K. W. Rodarmer, L. L. Rodriguez,
A. F. Rubin, M. Rueda, G. A. Rushton, R. S. Ryan, G. I. Saunders, H. Schuilenburg, T. Schwede, S. Scollen,
A. Senf, N. C. Sheffield, N. Skantharajah, A. V. Smith, H. J. Sofia, D. Spalding, A. B. Spurdle, Z. Stark, L. D.
Stein, M. Suematsu, P. Tan, J. A. Tedds, A. A. Thomson, A. Thorogood, T. L. Tickle, K. Tokunaga, J. Törnroos,
D. Torrents, S. Upchurch, A. Valencia, R. V. Guimera, J. Vamathevan, S. Varma, D. F. Vears, C. Viner, C. Voisin,
A. H. Wagner, S. E. Wallace, B. P. Walsh, M. S. Williams, E. C. Winkler, B. J. Wold, G. M. Wood, J. P. Woolley,

24

https://github.com/togethercomputer/stripedhyena
https://github.com/togethercomputer/stripedhyena


C. Yamasaki, A. D. Yates, C. K. Yung, L. J. Zass, K. Zaytseva, J. Zhang, P. Goodhand, K. North, and E. Birney.
GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell
Genomics, 1:100029, 11 2021. ISSN 2666979X. doi: 10.1016/j.xgen.2021.100029.

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and R. Fergus.
Biological structure and function emerge from scaling unsupervised learning to 250 million protein se-
quences. Proceedings of the National Academy of Sciences, 118:e2016239118, 2021. ISSN 0027-8424. doi:
10.1073/pnas.2016239118.

E. P. C. Rocha and A. Danchin. Gene essentiality determines chromosome organisation in bacteria. Nucleic
Acids Research, 31:6570–6577, 11 2003. ISSN 1362-4962. doi: 10.1093/nar/gkg859.

D. W. Romero, A. Kuzina, E. J. Bekkers, J. M. Tomczak, and M. Hoogendoorn. Ckconv: Continuous kernel
convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021.

J. Russel, R. Pinilla-Redondo, D. Mayo-Muñoz, S. A. Shah, and S. J. Sørensen. CRISPRCasTyper: Automated
identification, annotation, and classification of CRISPR-Cas loci. CRISPR J, 3(6):462–469, Dec. 2020.

Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. Nov. 2015.

T. Seemann. barrnap, 2018.

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

R. A. Silverstein, S. Sun, M. Verby, J. Weile, Y. Wu, M. Gebbia, I. Fotiadou, J. Kitaygorodsky, and F. P. Roth.
A systematic genotype-phenotype map for missense variants in the human intellectual disability-associated
gene GDI1. bioRxiv, page 2021.10.06.463360, 1 2022. doi: 10.1101/2021.10.06.463360. URL http:
//biorxiv.org/content/early/2022/10/11/2021.10.06.463360.abstract.

M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence searching for the analysis of massive
data sets. Nat. Biotechnol., 35(11):1026–1028, Nov. 2017.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

S. Sun, J. Weile, M. Verby, Y. Wu, Y. Wang, A. G. Cote, I. Fotiadou, J. Kitaygorodsky, M. Vidal, J. Rine, P. Ješina,
V. Kožich, and F. P. Roth. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase.
Genome Medicine, 12:13, 12 2020. ISSN 1756-994X. doi: 10.1186/s13073-020-0711-1.

S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B. Djahanschiri, G. Zeller, D. R.
Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C. Cruaud, F. d’Ovidio, S. Engelen, I. Ferrera, J. M.
Gasol, L. Guidi, F. Hildebrand, F. Kokoszka, C. Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-
Llonch, H. Sarmento, S. Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, Tara Oceans
coordinators, C. Bowler, C. de Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. Jaillon, F. Not,
H. Ogata, S. Pesant, S. Speich, L. Stemmann, M. B. Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. Raes,
S. G. Acinas, and P. Bork. Ocean plankton. structure and function of the global ocean microbiome. Science,
348(6237):1261359, May 2015.

Y. Tay, V. Q. Tran, S. Ruder, J. Gupta, H. W. Chung, D. Bahri, Z. Qin, S. Baumgartner, C. Yu, and D. Met-
zler. Charformer: Fast character transformers via gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672, 2021.

C. V. Theodoris, L. Xiao, A. Chopra, M. D. Chaffin, Z. R. A. Sayed, M. C. Hill, H. Mantineo, E. M. Brydon,
Z. Zeng, X. S. Liu, and P. T. Ellinor. Transfer learning enables predictions in network biology. Nature, 618:
616–624, 6 2023. ISSN 0028-0836. doi: 10.1038/s41586-023-06139-9.

K. Tsuboyama, J. Dauparas, J. Chen, E. Laine, Y. M. Behbahani, J. J. Weinstein, N. M. Mangan, S. Ovchinnikov,
and G. J. Rocklin. Mega-scale experimental analysis of protein folding stability in biology and design. Nature,
620:434–444, 8 2023. ISSN 0028-0836. doi: 10.1038/s41586-023-06328-6.

25

http://biorxiv.org/content/early/2022/10/11/2021.10.06.463360.abstract
http://biorxiv.org/content/early/2022/10/11/2021.10.06.463360.abstract


K. H. Turner, A. K. Wessel, G. C. Palmer, J. L. Murray, and M. Whiteley. Essential genome of Pseudomonas
aeruginosa in cystic fibrosis sputum. Proceedings of the National Academy of Sciences, 112:4110–4115, 3
2015. ISSN 0027-8424. doi: 10.1073/pnas.1419677112.

J. Y. Wang, P. Pausch, and J. A. Doudna. Structural biology of CRISPR-Cas immunity and genome edit-
ing enzymes. Nature Reviews Microbiology, 20:641–656, 11 2022. ISSN 1740-1526. doi: 10.1038/
s41579-022-00739-4.

J. Watson and F. Crick. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature,
171:737–738, 4 1953. ISSN 0028-0836. doi: 10.1038/171737a0.

J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst, R. J.
Ragotte, L. F. Milles, B. I. M. Wicky, N. Hanikel, S. J. Pellock, A. Courbet, W. Sheffler, J. Wang, P. Venkatesh,
I. Sappington, S. V. Torres, A. Lauko, V. D. Bortoli, E. Mathieu, S. Ovchinnikov, R. Barzilay, T. S. Jaakkola,
F. DiMaio, M. Baek, and D. Baker. De novo design of protein structure and function with rfdiffusion. Nature,
620:1089–1100, 8 2023. ISSN 0028-0836. doi: 10.1038/s41586-023-06415-8.

R. Weeks and M. Ostermeier. Fitness and functional landscapes of the E. coli RNase III gene rnc. Molecular
Biology and Evolution, 40, 3 2023. ISSN 0737-4038. doi: 10.1093/molbev/msad047.

J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le. Finetuned language
models are zero-shot learners. 2022. URL https://openreview.net/forum?id=gEZrGCozdqR.

J. Wei, P. Lotfy, K. Faizi, S. Baungaard, E. Gibson, E. Wang, H. Slabodkin, E. Kinnaman, S. Chandrasekaran,
H. Kitano, M. G. Durrant, C. V. Duffy, A. Pawluk, P. D. Hsu, and S. Konermann. Deep learning and CRISPR-
Cas13d ortholog discovery for optimized RNA targeting. Cell Syst, 14(12):1087–1102.e13, Dec. 2023.

W. Xiong, J. Liu, I. Molybog, H. Zhang, P. Bhargava, R. Hou, L. Martin, R. Rungta, K. A. Sankararaman, B. Oguz,
et al. Effective long-context scaling of foundation models. arXiv preprint arXiv:2309.16039, 2023.

K. K. Yang, N. Fusi, and A. X. Lu. Convolutions are competitive with transformers for protein sequence pre-
training. bioRxiv, 2024. doi: 10.1101/2022.05.19.492714. URL https://www.biorxiv.org/content/
early/2024/02/05/2022.05.19.492714.

J. Ye, S. McGinnis, and T. L. Madden. BLAST: improvements for better sequence analysis. Nucleic Acids Res.,
34(Web Server issue):W6–9, July 2006.

N. D. Youngblut, J. de la Cuesta-Zuluaga, G. H. Reischer, S. Dauser, N. Schuster, C. Walzer, G. Stalder, A. H.
Farnleitner, and R. E. Ley. Large-scale metagenome assembly reveals novel animal-associated microbial
genomes, biosynthetic gene clusters, and other genetic diversity. mSystems, 5(6), Nov. 2020.

B. Zhang and R. Sennrich. Root mean square layer normalization. Advances in Neural Information Processing
Systems, 32, 2019.

M. Zhang, K. K. Saab, M. Poli, T. Dao, K. Goel, and C. Ré. Effectively modeling time series with simple discrete
state spaces. arXiv preprint arXiv:2303.09489, 2023.

R. Zhang. DEG: a database of essential genes. Nucleic Acids Research, 32:271D–272, 1 2004. ISSN 1362-4962.
doi: 10.1093/nar/gkh024.

Z. D. Zhang, M. Nayar, D. Ammons, J. Rampersad, and G. E. Fox. Rapid in vivo exploration of a 5S rRNA
neutral network. J. Microbiol. Methods, 76(2):181–187, Feb. 2009.

Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu. DNABERT-2: Efficient foundation model and benchmark
for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.

M. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez, A. Clyde, B. Kale, D. Perez-Rivera,
H. Ma, C. M. Mann, M. Irvin, D. G. Ozgulbas, N. Vassilieva, J. G. Pauloski, L. Ward, V. Hayot-Sasson,
M. Emani, S. Foreman, Z. Xie, D. Lin, M. Shukla, W. Nie, J. Romero, C. Dallago, A. Vahdat, C. Xiao,
T. Gibbs, I. Foster, J. J. Davis, M. E. Papka, T. Brettin, R. Stevens, A. Anandkumar, V. Vishwanath, and
A. Ramanathan. GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics. The
International Journal of High Performance Computing Applications, 37:683–705, 11 2023. ISSN 1094-3420.
doi: 10.1177/10943420231201154.

26

https://openreview.net/forum?id=gEZrGCozdqR
https://www.biorxiv.org/content/early/2024/02/05/2022.05.19.492714
https://www.biorxiv.org/content/early/2024/02/05/2022.05.19.492714


Sequence modeling and design
from molecular to genome scale with Evo

Supplementary Material

Contents

1 Introduction 1

2 Results 3

2.1 Modeling long sequences at nucleotide resolution with the StripedHyena architecture . . . . . 3

2.2 Training Evo at scale on OpenGenome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 StripedHyena demonstrates favorable scaling laws on DNA sequence data . . . . . . . . . . . . 4

2.4 Evo performs zero-shot function prediction across DNA, RNA, and protein modalities . . . . . 4

2.4.1 Predicting mutational effects on protein function . . . . . . . . . . . . . . . . . . . . . 4

2.4.2 Predicting mutational effects on ncRNA function . . . . . . . . . . . . . . . . . . . . . . 6

2.4.3 Predicting gene expression from regulatory DNA . . . . . . . . . . . . . . . . . . . . . 6

2.5 Generative design of CRISPR-Cas molecular complexes . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Generative design of transposable biological systems . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Predicting gene essentiality with long genomic context . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Generating DNA sequences at genome scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Discussion 14

4 Code and data availability 16

5 Acknowledgements 16

6 Author Contributions 16

7 Competing Interests 16

A Safety and ethics discussion 29

A.1 Safety and ethical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.1.1 Whole-genome foundation models have the potential for misuse . . . . . . . . . . . . . 29

A.1.2 Whole-genome foundation models could contribute to social and health inequity . . . . 29

27



A.1.3 Whole-genome foundation models could contribute to disruptions to the natural envi-
ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.2 The path forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B Methods 31

B.1 StripedHyena architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.2 OpenGenome datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B.3 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.4 Scaling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.5 Generating DNA sequences with Evo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.6 Multimodal evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.6.1 Protein function prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.6.2 ncRNA function prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.6.3 Gene expression prediction from regulatory DNA . . . . . . . . . . . . . . . . . . . . . 36

B.7 CRISPR-Cas finetuning, generation, and downstream analysis . . . . . . . . . . . . . . . . . . 37

B.8 IS200/IS605 finetuning, generation, and downstream analysis . . . . . . . . . . . . . . . . . . 37

B.9 Gene essentiality prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.10 Genome-scale generation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C Supplementary tables and figures 40

28



A. Safety and ethics discussion

The introduction of powerful generative genomic foundation models such as Evo enables the rapid deciphering
of complex genetic information, which can be used for genetic engineering and therapeutic development. Evo
is the first of its kind to predict and generate DNA sequences at the whole-genome scale with single-nucleotide
resolution, albeit only for prokaryotes in this version. As future capability increases are likely achievable with
the class of large-scale DNA models enabled by Evo, we provide an extended ethical discussion on potential
risks and precautionary measures. While Evo is limited in its current form, the molecular design, synthesis,
manipulation, and dissemination of new synthetic genetic materials could pose concerns to individuals, society,
and the environment. Through a responsible AI lens (Badal et al., 2023), we forecast three salient ethical
implications and identify mediating solutions.

A.1. Safety and ethical implications

A.1.1. Whole-genome foundation models have the potential for misuse

There are concerns that the dual-use (or misuse) of genomic foundation models by malevolent actors could
pose a threat to biosafety and biosecurity (Baker and Church, 2024). Tools like Evo serve to enhance queries
of the existing genomic knowledge base and identify genetic regions of interest for editing or experimentation.
The ability to discern fitness associated with certain sequences can assist in the discovery of novel biomarkers
or therapeutic targets, but can also catalyze the development of harmful synthetic microorganisms that more
easily bypass the body’s natural defenses, are resistant to current treatments, or cause more severe disease.
Fortunately, even with optimal synthetic genomic designs, the ability to create viable organisms is limited by
high barriers to entry, including a substantial amount of technical resources and expertise needed to carry out
genome synthesis and expression, which is further compounded by the unpredictability of biological mech-
anisms. Nevertheless, as genetic engineering tools become more readily available, guardrails (for example,
access controls, usage audits) should be agreed upon by shareholders to limit unfettered queries for harmful
genetic sequences. Clear definitions of what constitutes “dual-misuse” are also needed to draw the line for
researchers, policy makers, and other shareholders.

A.1.2. Whole-genome foundation models could contribute to social and health inequity

Given the high barriers to entry, access and capability inequality with tools such as Evo can lead to inadvertent
societal harms. Evo is open source to promote transparency and reproducible research. However, those who
can most effectively use, and hence benefit the most from, the tool are entities with coordinated biotechnical
resources and expertise, such as biotechnology and pharmaceutical corporations. These companies may ac-
celerate research in a direction that prioritizes returns-on-investment over the global disease burden or health
equity (Morin et al., 2023). Along the same line, wealthier nations or more well-funded institutions also
stand to better leverage Evo to accelerate their research agendas, further widening the gap between high- and
low-resource settings.

The use of generative tools in biology also raises complex intellectual property concerns. Biological foun-
dation models such as Evo may enable an organization to bypass current intellectual property limitations on
biological therapeutics or other materials. In some cases, this may lead to a monopolization of treatments for
certain conditions. Such an entity could then use these rights to set prohibitively high prices and make treat-
ments inaccessible to most patients (for example, those in low-income countries), thus further exacerbating
health disparities (Peek, 2021). In other cases, bypassing intellectual property protections could discourage
further investment into therapeutic innovation. Overall, we argue that an entity that uses and benefits from
open-source tools such as Evo has a duty to return value to the public and contribute to social and health
equity. Intellectual property law should also evolve as generative models increasingly automate the biological
discovery and design process.

A.1.3. Whole-genome foundation models could contribute to disruptions to the natural environment

Although Evo does not directly manipulate any genetic material, it may enhance the efficiency of genetic engi-
neering projects. There are concerns with how the capabilities of genetic engineering technologies may disrupt
the environment and cause ecological uncertainty (for example, the release of altered organisms), leading to
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a loss of biodiversity or the emergence of new, potentially harmful species (Macfarlane et al., 2022). Although
the ecological impacts of training whole-genome foundation models remain unknown, more immediately, it is
also important to consider the carbon footprint associated with increasing infrastructure and computational
demands (Nature Computational Science, 2023). The capabilities of tools such as Evo, alongside other tech-
nologies for genome editing and ecological engineering, add to complex debates about the extent to which
science should intervene in evolution. As we push the boundaries of scientific capabilities with tools such as
Evo, it becomes imperative to reflect on the interactions and boundaries between our inventions and natu-
ral evolutionary processes, aiming to preserve ecological balance, maintain environmental sustainability, and
uphold ethical standards.

A.2. The path forward

The path forward for the responsible use and development of tools like Evo is anchored in the establishment
of clear, comprehensive guidelines that delineate ethical practices. These guidelines serve as a responsible
AI framework, ensuring that all shareholders—researchers, developers, and users—have a common under-
standing of the safety and ethical dimensions inherent in genetic engineering. Coupled with robust oversight
mechanisms, this approach aims to monitor and manage the application of Evo to prevent misuse and en-
sure its alignment with ethical standards. Furthermore, promoting transparency regarding the use of these
technologies and fostering open dialogue among all parties will enhance trust and collaboration within the
scientific community and beyond.

To address disparities in access and capabilities, particularly in low-income countries, the strategy includes
forging community partnerships and international collaborations. By offering targeted training and support,
these partnerships can democratize access to advanced tools like Evo, enabling a broader spectrum of scientists
and researchers to contribute to and benefit from genetic engineering innovations. At the policy level, investing
in education and capacity building emerges as a pivotal element, equipping the next generation of scientists
with the ethical acumen and technical skills to navigate the complexities of genetic research responsibly.

Central to sustaining ethical innovation is the creation of a dynamic feedback loop that engages all share-
holders in a continuous dialogue. By setting up mechanisms to collect and integrate feedback from those
involved in or impacted by Evo’s applications, the process ensures that guidelines, policies, and practices are
regularly refined in response to evolving ethical challenges and societal expectations. Collaborating with or-
ganizations such as the Global Alliance for Genomics and Health (GA4GH) (Rehm et al., 2021) to develop
and update genetic engineering guidelines further solidifies this commitment to ethical excellence. This mul-
tifaceted approach not only addresses immediate concerns but also lays the groundwork for a future where
genetic engineering advances in harmony with ethical principles and societal values.
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B. Methods

B.1. StripedHyena architecture

Evo is based on StripedHyena (Poli et al., 2023a), a state-of-the-art hybrid model architecture for sequence
modeling. Evo comprises 32 blocks at a model width of 4096 dimensions. Each block contains a sequence
mixing layer, tasked with processing information along the sequence dimension, and a channel mixing layer,
focused on processing information along the model width dimension. In the sequence mixing layers, Evo em-
ploys 29 hyena layers, interleaved with 3 rotary (Su et al., 2024) self-attention layers at equal intervals. We
parametrize convolutions in hyena operators using the modal canonical form described in (Massaroli et al.,
2024). For the channel mixing layers, Evo employs gated linear units (Dauphin et al., 2017; Shazeer, 2020).
Evo further normalizes the inputs to each layer using root mean square layer normalization (Zhang and Sen-
nrich, 2019).

Hyena layers Hyena (Poli et al., 2023a) is a sequence mixer implementing an input-dependent (data-
controlled) operator via a composition of short convolutions, long convolutions and gating (Figure 1B). Hyena
belongs to the class of deep signal processing primitives (Poli et al., 2023a; Fu et al., 2024; Massaroli et al.,
2024), designed for efficient, input-dependent computation in large-scale sequencemodels. Input-dependence
enables an architecture built with deep signal processing layers to adapt computation based on the input, en-
abling in-context learning (Arora et al., 2023; Bhattamishra et al., 2023). These layers rely on structured
operators compatible with fast multiplication algorithms and can thus be evaluated in subquadratic time us-
ing, e.g., Fast Fourier Transforms for convolutions. The operators are parametrized implicitly, e.g., learning a
map from positional embeddings, or the input, to the parameters of the operator. Typical choices of implicit
parametrizations are linear projections, hypernetworks (Romero et al., 2021; Poli et al., 2023a) or linear state-
space models in modal or companion form (Gupta et al., 2022; Gu et al., 2022; Massaroli et al., 2024; Orvieto
et al., 2023; Zhang et al., 2023). The blueprint of a hyena operator forward pass is summarized below.

Algorithm 1 ConvProjection

Require: Input sequence 𝑢 ∈ ℝ𝐿×𝐷, inner dimension 𝐷𝑒

1. In parallel across 𝐿: 𝑧̂ = Linear(𝑢), Linear : ℝ𝐷 → ℝ3𝐷𝑒

2. In parallel across 𝐷𝑒: 𝑧 = DepthwiseConv1d(ℎ, 𝑧̂), ℎ is a short convolution filter
3. Reshape and split 𝑧 into 𝑞, 𝑘, 𝑣. Dimensions of one element are 𝑞 ∈ ℝ𝐷𝑒×𝐿

Return 𝑞, 𝑘, 𝑣

Algorithm 3 Forward pass
Require: Input sequence 𝑢 ∈ ℝ𝐿×𝐷, order 𝑁, model width 𝐷, sequence length 𝐿, inner dimension 𝐷𝑒

1. 𝑞, 𝑘, 𝑣 = ConvProjection(𝑢)
2. ℎ = ImplicitFilter(𝐿)
3. In parallel: 𝑣← 𝑘 · 𝑣
4. In parallel across 𝐷𝑒: 𝑣𝑡 ← FFTConv(ℎ, 𝑣)𝑡
5. In parallel: 𝑣← 𝑞 · 𝑣
Return 𝑦 = 𝑣

Self-attention layers Self-attention is the core sequence mixing operator of Transformer models. Self-
attention constructs the output sequence as a weighted combination of the input elements, where the weights
themselves are input-dependent. Given an input sequence, the forward pass of an (unnormalized) selfatten-
tion layer is:

(𝑞, 𝑘, 𝑣) ↦→ 𝐴(𝑞, 𝑘)𝑣, 𝐴(𝑞, 𝑘) = softmax(𝑞𝑘𝑇 )
where queries 𝑞 ∈ ℝ𝐿×𝐷 and keys 𝑘 ∈ ℝ𝐿×𝐷 and values 𝑣 ∈ ℝ𝐿×𝐷 are obtained through a linear transformation
of the input e.g., 𝑣 = 𝑢𝑊𝑣. The softmax is applied to rows of 𝐴. The query, key, value terminology is borrowed
from databases, where keys are used to index stored values. Conceptually, the values of the attention matrix
𝐴(𝑞, 𝑘) measure the similarity beween queries and keys akin to matching queries to keys in a database.
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Positional embeddings By itself, the self-attention operator does not have any notion of the different po-
sitions of the input embeddings in an input sequence. For this reason, it is generally supplemented with a
positional encoding mechanism. The attention layers of StripedHyena utilize a rotary position embedding
mechanism (RoPE) to model relative positional information (Su et al., 2024). Position information is encoded
by rotating the query and key token vectors of the attention operator. Specifically, RoPE implements a rota-
tion to queries and keys, with the rotation magnitude defined as a function of their relative position in the
sequence.

To extend the context window length from 8k to 131k during our second pretraining stage, we apply
linear position interpolation to extend the rotary position embedding applied in the first pretraining stage at
8k sequence length (for details, see Chen et al. (2023)). Interpolating enables themodel to continue leveraging
its learned representations when applied to longer sequences than it was originally trained on. We also tested
other position interpolation methods but found that they performed slightly worse than linear interpolation
on our data.

Tokenization In language modeling, tokens describe the smallest unit of semantic information that is used
by a model to process language. For example, tokens can indicate individual words of a vocabulary or even
lower-level semantic information such as individual characters. Tokenization describes the process of mapping
these semantic language units, such as words or characters, to unique integer values, each indicating an entry
in a lookup table. These integer values are mapped by embedding layers to vectors, which are then processed
by the model in an end-to-end fashion. Evo tokenizes DNA sequences at single-nucleotide resolution, using the
UTF-8 encoding implemented in Python. During pretraining, Evo uses an effective vocabulary of four tokens,
one per base, from a total vocabulary of 512 characters. We use the additional characters to enable prompting
with special tokens during generation with finetuned models.

B.2. OpenGenome datasets

The OpenGenome pretraining dataset (S3 for summary statistics) was compiled from three different sources:
1) Bacterial and archaeal genomes from the Genome Taxonomy Database (GTDB) v214.1 (Parks et al., 2015),
2) curated prokaryotic viruses from the IMG/VR v4 database (Camargo et al., 2023), and 3) plasmid sequences
from the IMG/PR database (Camargo et al., 2024). For GTDB, representative genomes for each species were
retained to reduce data redundancy.

For IMG/PR, only one representative per plasmid taxonomic unit (PTU) was kept. For IMG/VR, sequences
were retained only if they were labeled as “High-confidence” according to the database metadata, and only
one representative per viral operational taxonomic unit (vOTU) was kept. These sequences were further
curated to remove potential eukaryotic viruses by keeping only sequences whose assigned taxonomic classifi-
cation was found within a prokaryotic host at least twice. Next, the remaining taxonomic classifications were
inspected and further filtered to exclude all viruses assigned to any of 19 families (Adenoviridae, Caliciviri-
dae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviri-
dae, Papillomaviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Retroviridae, Rhabdoviridae,
Circoviridae, Geminiviridae, Picobirnaviridae) or 12 orders (Amarillovirales, Durnavirales, Geplafuvirales,
Herpesvirales, Lefavirales, Ortervirales, Orthopolintovirales, Piccovirales, Picornavirales, Priklausovirales, Cir-
livirales, Mulpavirales). Next, viruses with poor taxonomic specificity were excluded, including those with no
assigned realm at all, and those only assigned up to the level of r:Riboviria, r:Monodnaviria, k:Heunggongvirae,
k:Bamfordvirae, p:Preplasmiviricota, p:Cressdnaviricota, p:Pisuviricota, or c:Tectiliviricetes.

The CRISPR/Cas and IS200/IS605 fine-tuning datasets were compiled from a previously described custom
database gathered frommultiple sources (Wei et al., 2023). Briefly, this custom database includes genomic and
metagenomic sequence data from NCBI RefSeq O’Leary et al. (2016), UHGG (Almeida et al., 2021), JGI IMG
(Chen et al., 2021), the Gut Phage Database (Camarillo-Guerrero et al., 2021), the Human Gastrointestinal
Bacteria Genome Collection (Forster et al., 2019), MGnify (Mitchell et al., 2020), Youngblut et al. (2020)
animal gut metagenomes, MGRAST (Meyer et al., 2008), and Tara Oceans samples (Sunagawa et al., 2015).

To compile the CRISPR/Cas genomic loci, this custom database was searched using profile HMM models
and the HMMER software package to identify Cas9, Cas12, and Cas13 sequences (Finn et al., 2011). Several
pHMMs were collected from the CRISPRCasTyper annotation tool (Russel et al., 2020), and a recent com-
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putational survey of TnpB and Cas12 (Altae-Tran et al., 2023). Custom Cas13 pHMMs that were previously
generated by our group were also used (Wei et al., 2023). These models were searched against our large cus-
tom database using hmmsearch and the parameter “-Z 1000000”. All hits that met E < 1×10−6 with at least
one pHMM were kept. Only hits that were at least 300 aa long and covered over 80% of the pHMM were kept.
For all hits to a given pHMM, only proteins that were within the middle 99% of the size distribution were kept.
Corresponding genetic loci were extracted from the database, including 8,192 nucleotides of flanking sequence
on both the 5′ and 3′ ends of the Cas effector CDS. The tool minced was used to identify CRISPR arrays in the
flanking sequences using the parameters “-minRL 18 -maxRL 50 -minSL 18 -maxRL 50” (?). Only loci
with both a predicted Cas effector and a CRISPR array were retained. The final CRISPR/Cas loci were extracted
by first identifying the subsequence that covered both the Cas effector and the CRISPR array, and then includ-
ing additional flanking nucleotides on both sides up until 8,192 were retained for fine-tuning purposes. Only
1 locus per 90% identity Cas cluster was retained, clustered using the MMseqs2 command “easy-cluster
––cluster-reassign ––cluster-mode 0 ––cov-mode 0 -c 0.7 ––min-seq-id 0.9” (Steinegger
and Söding, 2017).

To compile the IS200/IS605 loci, this custom database was searched using a Pfam Y1 HUH Transposase
pHMM model (Pfam ID: PF01797). This pHMM identifies IS200/IS605 TnpA proteins. All matches meeting
E-value < 1 × 10−6 that covered at least 80% of the pHMM and were less than 400 aa were kept. 8,196 nt
of CDS-flanking sequence was then extracted for each hit. Loci that also contained TnpB coding sequences
were identified using previously compiled pHMMs (Altae-Tran et al., 2023), and a custom pHMM compiled
using jackhmmer and the ISDra2 TnpB as an initial query against the MGnify protein database, followed by a
MAFFT alignment of hits and pHMM construction with HMMER (Finn et al., 2011; Mitchell et al., 2020; Katoh
et al., 2002). Hits that were between 250 and 650 aa in length were retained, and only loci where the distance
between the beginning and end of the TnpA and TnpB sequences was less than 2500 nt were retained. For
TnpA-only loci, up to 300 nt of flanking sequence were added to either side of the CDS. For TnpA+TnpB loci,
up to 300 nt were added to the TnpA side of the IS200/IS605 element, while 600 nt were added to the TnpB
side (to account for the presence of an 𝜔RNA). Only 1 locus per 90% identity TnpA cluster was retained.

B.3. Training procedure

We pretrain Evo in two stages, first with a context size of 8k tokens, followed by a second stage where we
increase the context size to 131k tokens. Multi-stage sequence length pretraining has been shown to reduce
the overall number of compute hours required to train long context models (Xiong et al., 2023). In total, we
trained Evo in stage 1 on 64 Nvidia H100 GPUs and on 128 Nvidia A100 GPUs in stage 2. In total, Evo was
trained on approximately 340B tokens, using approximately 2× 1022 FLOPS. For specific generation tasks, we
further finetuned Evo, as described in the following sections. We also eport long context perplexity scaling of
Evo 131k in Figure S2. Additional details on training are provided in Table S2.

Dataloading We use sequence packing to generate training samples, where multiple DNA sequences are
appended until the context length (8k or 131k) is reached. Individual DNA sequences are separated by end-
of-sequence (EOS) tokens. Depending on the dataset or task, we additionally prepend a special class (CLS)
token to condition the model, for example, to steer its generations through prompting.

Hyperparameter tuning and direct model comparisons Before training Evo, we carried out hyperparam-
eter tuning on partially trained 7B Transformer++ (see B.4) models and compared to similarly sized Hyena
and StripedHyena models. In particular, we swept batch size, learning rate and other architectural details.
Even when controlling for training iterations instead of compute (FLOPS), Transformer++ performance is sub-
stantially worse than StripedHyena (see S4). Out of all the baselines, we find that StripedHyena achieves the
overall lowest perplexity at the 7B scale, consistent with the scaling rates presented in Figure 1G.

B.4. Scaling laws

We compare different classes of architectures via a compute-optimal protocol, aimed at evaluating results
on the compute-optimal frontier. Compute-optimal analysis studies the best performance of a pretraining run
given a compute budget, typically indicated in floating point operations (FLOPs), and achieved by optimally
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allocating portions of the compute budget to model size and dataset size. Architecture types differ in compute
efficiency, as well as how they allocate this compute budget.

We started by tuning hyperparameters such as learning rate and batch size for Transformer++ with a grid
search, then used the same values for all architectures except in settings where numerical instability was
observed. To address instability, we lowered the learning rate gradually and repeated the experiment until
convergence. In all experiments, we trained models with 8,192 tokens in context length. For each compute
budget defined by a total FLOP count, we varied the model sizes (6 million to 1 billion parameters) and the
number of tokens trained. To measure model performance, we use the perplexity metric, which indicates how
well an autoregressive model performs at predicting the next token of a sequence and is highly correlated with
performance on downstream tasks. A lower perplexity value indicates better performance.

Scaling laws procedure We provide a summary of the steps involved in our scaling laws analysis. Quanti-
fying scaling rates allows us to predict performance as model size, dataset size, and compute grow.

1. Define a set of compute budgets to study. We use 8 × 1018, 2 × 1019, 4 × 1019 and 8 × 1019 FLOPS.
2. Calculate the FLOPS (floating point operations) required to process a fixed input size for the model
architecture of interest (i.e. the “cost” of using the model).

3. Identify the model’s compute-optimal allocation for each compute budget:
(a) Select a wide range of possible model sizes, and calculate for each model size the corresponding
number of tokens that need to be processed to reach the compute budget. Other hyperparame-
ters are chosen according to Table S1. We generally observe minor changes to model topology
(depth, width) to only minimally affect perplexity, aligning our results with the findings presented
by Kaplan et al. (2020) for Transformers.

(b) Train a model of each size and record its performance (e.g., in terms of perplexity).
(c) Identify the optimal compute allocation: Following prior analysis, we fit a second-order polynomial
as a function from (log) model size to perplexity, and extract obtained the compute-optimal point
as its minimum. The compute-optimal point identifies the optimal allocation of model size and
training tokens at the given compute budget.

After deriving the compute-optimal scaling rates (Figure 1G), we compare architectures and compute optimal
allocation of tokens and model size (Figure S5). In Figure S3, we also show rates for compute-suboptimal
model sizes by architecture. In particular, we quantify the effect on perplexity scaling caused by a subopti-
mal allocation of compute budget to model or dataset size (e.g., training a smaller model for more tokens).
We estimate the compute-optimal model size for each compute budget, then reduce it by a percentage (the
offset). The corresponding perplexity is obtained via the IsoFLOP curves (Figure 1F). Transformer++ per-
plexity scaling rapidly degrades outside the compute-optimal frontier, in contrast to Hyena and StripedHyena.
Architecture details of models trained for our scaling law analysis provided in Table S1.

Transformer++ We use a modern decoder-only Transformer architecture with rotary position embeddings
(Su et al., 2024), pre-norm with root mean square layer normalization, and SwiGLU as channel mixer. The
inner width of the SwiGLU is 4/3 the model width. We experimented with grouped-query attention (GQA)
(Ainslie et al., 2023) and found minimal differences in final loss, suggesting the technique may be suited to
DNA sequence modeling, in order to further reduce memory footprint during inference. All scaling results
with Transformer++ do not use GQA.

Hyena TheHyena baseline is designedwith the same architecture improvements applied to the Transformer++
model. We replace all multi-headed self-attention layers with hyena layers, and use amodal canonical parametriza-
tion for the long convolution, with state dimension 8.

Mamba We use the implementation of Mamba as provided by the authors in the public repository.
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B.5. Generating DNA sequences with Evo

We sample sequences from Evo using standard top-𝑘 and temperature-based methods for autoregressive mod-
els. Evo benefits from the fast recurrent mode of hyena layers, enabling lower latency and memory cost
(Massaroli et al., 2024; Poli et al., 2023b). In particular, we use the recurrent form of the modal canonical
form as shown in (Massaroli et al., 2024), first processing the prompt with a Fast Fourier Transformmodified to
return output and state. We use a cache for the states of short convolutions. Evo can generate sequences of up
to 650k nucleotides on a single 80GB GPU, in contrast to other long context methods for dense Transformers
requiring a larger number of nodes. We use standard kv-caching for rotary attention layers in StripedHyena.

Controllable generation. We follow standard language model prompting techniques that condition genera-
tion on a given prefix. For class-conditional generation we prompt with a single token, representing the desired
class, or genomic sequence type (e.g. Cas system, IS200/605). The model can also be steered by prompting
on desired DNA subsequences.

B.6. Multimodal evaluations

B.6.1. Protein function prediction

We used DMS datasets to benchmark protein and nucleotide language models in their ability to predict muta-
tional effects on protein function. In all cases, we used the nucleotide sequences reported by the original study
authors. We limited our analysis to E. coli and human proteins, where E. coli protein information is contained
in the Evo training dataset but where human proteins are not.

To compile the nucleotide information from E. coli DMS studies, we used all of the datasets listed in the
ProteinGym benchmark for which we could also find nucleotide-level information reported by the original
study authors. This resulted in six studies: a 𝛽-lactamase DMS by Firnberg et al. (2014), a 𝛽-lactamase DMS
by Jacquier et al. (2013), a CcdB DMS by Adkar et al. (2012), a multi-protein thermostability dataset by
Tsuboyama et al. (2023), an IF-1 DMS by Kelsic et al. (2016), and an Rnc DMS by Weeks and Ostermeier
(2023).

To compile the nucleotide information from human DMS studies, we narrowed the scope of the set of
datasets used in our human benchmark to the human datasets used by Livesey andMarsh (2023) to benchmark
mutational effect predictors. We also limited our analysis to studies where we could also find nucleotide-level
information reported by the original study authors. This resulted in six studies: a CBS DMS by Sun et al.
(2020), a GDI1 DMS by Silverstein et al. (2022), a PDE3A DMS by Garvie et al. (2021), a P53 DMS by Kotler
et al. (2018), a P53 DMS by Giacomelli et al. (2018), and a BRCA1 DMS by Findlay et al. (2018).

We compared Evo (pretrained with 8k context) to three nucleotide language models: GenSLM 2.5B, which
was trained with a codon vocabulary on sets of genes from prokaryotic organisms (Zvyagin et al., 2023);
Nucleotide Transformer 2B5_multi_species, which was trained with a 6-mer nucleotide vocabulary on
genome sequences from prokaryotic and eukaryotic species (Dalla-Torre et al., 2023); and RNA-FM, which was
trained on a single-nucleotide vocabulary on short ncRNA sequences (Chen et al., 2022). We also compared Evo
to several protein language models trained on non-redundant, generic corpuses of protein sequences: CARP
640M (Yang et al., 2024), ESM-1v (Meier et al., 2021), ESM-2 650M, ESM-2 3B (Lin et al., 2023), ProGen2
large, and ProGen 2 xlarge (Madani et al., 2023). For studies that provide models with multiple parameter
sizes, we selected the largest size on which we could perform inference with an 80 GB Nvidia H100 GPU
on sequences from all of our benchmarked studies without exceeding GPU memory. We also included ESM-
2 650M and ProGen2 large given that these models have sometimes shown better performance at function
prediction than larger variants of these models (Notin et al., 2023).

To compare nucleotide and protein language models, we used all unique nucleotide sequences and their
corresponding fitness values as reported by the original studies. Occasionally, we observed that the fitness
values reported for nucleotide sequences differed from fitness values reported for protein sequences; in such
cases, we used the fitness values reported for nucleotide sequences and evaluated the protein language mod-
els using the translated sequence. In cases where there are multiple nucleotide sequences for a single protein
sequence due to different codon usage, the nucleotide language models were evaluated on each unique nu-
cleotide sequence and the protein language models were evaluated on the coding sequence corresponding to
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each unique nucleotide sequence; this means that a protein language model could have been evaluated on the
same protein sequence multiple times for a given study. Some studies report fitness values for mutations that
involve stop codons; in such cases, we evaluated the nucleotide language model on the sequence containing
the stop codon and excluded these examples from the protein language model benchmark.

We computed the Spearman correlation between the experimental fitness values and the sequence likeli-
hood (for autoregressive language models) or the sequence pseudolikelihood (for masked language models).
We assessed statistical significance of the Spearman correlation coefficient under a null hypothesis that the
correlation coefficient is drawn from a 𝑡-distribution with 𝑁 − 2 degrees of freedom, where 𝑁 is the number of
samples over which we compute the correlation. We used this null distribution to compute a 𝑃 value based on
the observed correlation. We used the scipy Python library (https://scipy.org/) to compute these values.

B.6.2. ncRNA function prediction

We used DMS datasets to benchmark protein and nucleotide language models based on their ability to predict
mutational effects on ncRNA function. Given that no well established benchmark datasets exist for ncRNAs
function prediction, we curated the literature for examples of ncRNA mutational scanning experiments. We
obtained the following datasets: a ribozyme DMS by Kobori et al. (2015), a ribozyme DMS by Andreasson
et al. (2020), a tRNA DMS by Domingo et al. (2018), a tRNA DMS by Guy et al. (2014), a ribozyme DMS by
Hayden et al. (2011), a ribozyme DMS by Pitt and Ferré-D’Amaré (2010), and a rRNA mutagenesis study by
Zhang et al. (2009).

We compared Evo (pretrained with 8k context) to the nucleotide language models described above. Sim-
ilar to the methods applied to protein coding sequences above, we compiled experimental fitness values for
each ncRNA variant. We computed the Spearman correlation between the experimental fitness values and
the sequence likelihood (for autoregressive language models) or the sequence pseudolikelihood (for masked
language models). Correlation coefficients and associate 𝑃 values were computed as described above.

B.6.3. Gene expression prediction from regulatory DNA

To evaluate the model’s ability to learn properties of regulatory DNA, we used a dataset reported by Kosuri
et al. (2013) in which a set of E. coli promoters and a set of E. coli RBSs were combinatorially paired and the
promoter-RBS pairs were experimentally tested for their effect on downstream mRNA and protein expression.
We computed the sequence likelihood (for autoregressive language models) or the sequence pseudolikeli-
hood (for masked language models) for each promoter-RBS pair, where we concatenated the sequence of the
promoter directly with the sequence of the RBS.

We computed these likelihoods using Evo (pretrained with 8k context) and the three other nucleotide
language models described above. We used these likelihoods to predict continuous mRNA expression values
and binarized protein expression values as reported in the original study. Protein expression was binarized
using a cutoff at which expression values above 100,000 were treated as positive and values below 100,000
were treated as negative, where this cutoff was based on the bimodal distribution of protein expression val-
ues reported in the original study. We used the Spearman correlation coefficient to quantify the predictive
performance for mRNA expression and the AUROC to quantify predictive performance for protein expres-
sion. We assessed statistical significance of the Spearman correlation coefficient with a 𝑡-distributed 𝑃-value
as described above. We assessed the statistical significance of the AUROC with a permutation-based method
in which a null distribution is constructed by permuting the binary labels and recomputing the subsequence
AUROC. We performed 100,000 permutations to construct this null distribution.

We also attempted to quantify how well a given promoter-RBS pair was represented in the Evo pretraining
data, as we hypothesized that promoter-RBS pairs that are seen more often in nature, and would thereby
have higher language model likelihood, are also pairs that are more likely to lead to higher gene expression.
We attempted to align the promoter-RBS sequences to bacterial genomic sequences using three methods.
First, we constructed a BLAST database over the full GTDB using the makeblastdb command with default
parameters (Ye et al., 2006). We then used the blastn command with default parameters where for each
promoter-RBS pair we queried the database for significant hits. We used the number of returned BLAST hits
to score each promoter-RBS pair (having no hits was scored as zero). Second, we used mmseqs to construct
databases over the set of promoter-RBS pairs and over the full GTDB using the mmseqs createdb command
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(––dbtype 2) to create nucleotide databases. We then used mmseqs createindex (––search-type 3) to
create a nucleotide search index. We then conducted an all-by-all search (––cov-mode 2) to search for
sequences in GTDB that aligned to the promoter-RBS queries. We used the number of significant alignments
to score each promoter-RBS pair (having no alignments was scored as zero). Third, we attempted to align
promoter-RBS sequences to the E. coli reference genome (RefSeq: GCF_000005845.2) using bowtie2. We used
bowtie2-build with default parameters to build an index over the E. coli genome. We then treated promoter-
RBS pairs as unpaired reads in a FASTA file and enabled multimapping with the -a flag to bowtie2. We used
the number of alignments to score each promoter-RBS pair (having no alignments was scored as zero). We
used the Spearman correlation coefficient to quantify predictive performance for mRNA expression and the
AUROC to quantify predictive performance for protein expression and report the highest correlation values
across the three attempted methods.

B.7. CRISPR-Cas finetuning, generation, and downstream analysis

To generate CRISPR-Cas systems, we finetuned Evo by continuing to train the 8k-context pretrained model
on a dataset of CRISPR-Cas sequences, which was curated as described above. We retained most of the hy-
perparameters used during pretraining but set the batch size to 524k tokens and an initial learning rate of
0.00009698, which was the learning rate at the final step of pretraining. During pretraining, we prepended
a single class token corresponding to the type of Cas protein (Cas9, Cas12, or Cas13), which was identified
as described above; this class token was then followed by the nucleotide sequence. We also modified the dat-
aloader such that each sample provided to the model during training would begin with the first token of the
CRISPR-Cas sequence and, if a sequence was shorter than the context length, we padded the sequence to the
remaining context (where padding did not contribute to the loss computation). This ensured that each train-
ing sample would correspond to a single CRISPR-Cas sequence. We finetuned the model for approximately 10
epochs.

We prompted the model with a given class token for each sequence generation. We performed standard
temperature-based and top-𝑘 autoregressive sampling (Chang and Bergen, 2023). In our generations, we
performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, and 1.3, and top-𝑘
values of 2 and 4. All sampled sequences were then combined into a single file and used for downstream
extraction and analysis of candidate CRISPR systems.

The in silico Cas evaluation pipeline consisted of an initial open reading frame (ORF) search using Prodigal
(Hyatt et al., 2010) and subsequent profiling of the extracted ORFs using hiddenmarkovmodel (HMM) profiles
for each Cas subtype. Sampled sequences with a positive pHMM hit with an E-value under 1 × 10−3 and a
sequence length above a given threshold were further analyzed using the MinCED package to identify possible
CRISPR arrays (Bland et al., 2007). Generations containing both a Cas ORF and a CRISPR array were then
clustered using MMSeqs2 at a sequence identity of 90% and minimum coverage length of 75% (Steinegger
and Söding, 2017). Finally, representative sequences from the clustering analysis were aligned against Cas
ORF sequences in the training data with MMSeqs2 to quantify divergence from the training dataset.

Candidate sequences were selected from the cluster representatives within various sequence identity deciles
and processed using AlphaFold2 to manually inspect structural similarities between generations and a crystal
structure of wild-type SpCas9. Predicted Cas9 structures were aligned to SpCas9 (PDB: 4OO8) and its gRNA
complex with ChimeraX and top candidates were chosen for further analysis. Possible recognition (REC) and
nuclease (NUC) lobes of the sampled Cas9 structures were labeled by performing a multiple sequence align-
ment with the protein sequence of SpCas9. The MSA boundaries of the lobes in SpCas9 were used as bound-
aries for labeling the REC and NUC lobes in the sampled sequences. CRISPRtracrRNA was used to extract
potential tracrRNA sequences from candidate generations and co-folded with the extracted crRNA sequence
using RNAmultifold (Mitrofanov et al., 2022; Lorenz et al., 2011). Different combinations of tracrRNA and
crRNA lengths were assessed as the resulting mature crRNA and tracrRNA sequences are not readily apparent
from raw sequence data.

B.8. IS200/IS605 finetuning, generation, and downstream analysis

To generate IS605 systems, we finetuned Evo by continuing to train the 8k-context pretrained model on
a dataset of IS200/IS605 sequences, which was curated as described above. We retained most of the hy-
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perparameters used during pretraining but set the batch size to 524k tokens and an initial learning rate of
0.00009698, which was the learning rate at the final step of pretraining. During pretraining, we prepended
a generic start token to each sequence. We also modified the data loader such that each sample provided to
the model during training would begin with the first token of the IS200/IS605 sequence and, if a sequence
was shorter than the context length, we padded the sequence to the remaining context (where padding did
not contribute to the loss computation), similar to the strategy described for CRISPR-Cas9 systems above. We
finetuned the model for approximately 10 epochs.

We prompted the model with the start token for each sequence generation. We performed standard
temperature-based and top-𝑘 autoregressive sampling (Chang and Bergen, 2023). In our generations, we
performed an exhaustive sweep consisting of temperatures of 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, and 1.3, and top-𝑘
values of 2 and 4. We sampled a total of 1,004,850 sequences.

We analyzed generated sequences using prodigal to identify coding sequences and proteins (Hyatt et al.,
2010), followed by hmmsearch (-Z 1000000) using pHMMs to identify TnpA and TnpB sequences (Finn
et al., 2011), and cmsearch (-Z 4) using covariance models developed in a previous publication (Meers et al.,
2023) to identify candidate 𝜔RNAs (Nawrocki and Eddy, 2013). Candidate TnpA sequences were kept if they
had an E-value < 1 × 10−3 to the pHMM and if they covered at least 50% of the pHMM. Candidate TnpB
sequences were kept if they had an E-value < 1 × 10−3 to at least one pHMM, if they covered at least 50% of
the pHMM, and if they were between 300 and 600 amino acids in length.

Predicted TnpA and TnpB protein sequences were aligned back to proteins in the training set using MM-
seqs2 (Steinegger and Söding, 2017). The top hit for each protein was extracted and separately aligned using
the MAFFT-G-INS-I algorithm to estimate the amino acid identity across the full lengths of the two sequences
(Katoh et al., 2002). To account for different start codons and to generate a more conservative percentage
identity, these alignments were trimmed to the middle 80% of each sequence, end gaps were trimmed, and
the amino acid identity was recalculated.

For loci that contained both a TnpA and a TnpB coding sequence, we used ESMFold (Lin et al., 2023)
to predict atomic-level structures for each protein sequence. We reported the mean backbone atom pLDDT
as a measurement of ESMFold prediction confidence. Example TnpA and TnpB proteins were aligned to
the 2EC2 and 8BF8 PDB structures, respectively, using the cealign algorithm in PyMOL (Schrödinger, LLC,
2015). RNAfold from the ViennaRNA package was used to fold the predicted 𝜔RNA with parameters “-d3
-P rna_langdon2018.par” (Gruber et al., 2008; Langdon et al., 2018). We also used Evo to calculate the
entropy of the conditional probabilities at each position in a given sequence. For example, the entropy at
position 𝑖 was calculated using the likelihoods 𝑝(𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) over the entire vocabulary. We then visualized
these entropies alongside the annotated sequence positions for several canonical IS200/IS605 systems.

B.9. Gene essentiality prediction

We obtained binary genome-wide essentiality results for 56 bacterial genomes from the DEG database (Zhang,
2004) in which coding genes are labeled with “essential” or “nonessential” binary labels. We also obtained
genome-wide essentiality results for two phage genomes, lambda and P1, from Piya et al. (Piya et al., 2023)
and used the binary labels assigned by the study authors based on the results of their CRISPRi screen.

To perform the in silico gene essentiality screen, we obtained the whole bacterial genome using the RefSeq
IDs provided by DEG. We used RefSeq: NC_001416 as the reference genome for lambda phage and RefSeq:
NC_005856 as the reference genome for P1 phage. We iterated over all genes annotated as protein coding
and computed a score with a nucleotide language model for each gene. To compute the score, we provided
the language model with different levels of context: (1) the sequence of the gene only, (2) the sequence of the
gene plus equally distributed context on both sides of the gene up to a total 8,192 bp, or (3) the sequence of
the gene plus equally distributed context on both sides of the gene up to a total 65,536 bp. If a gene extended
beyond 8,192 bp, we used the first 8,192 bp of the gene sequences. We computed the score as the difference in
log-likelihoods between a mutated sequence and the unmutated wildtype sequence. To mutate the sequence,
we inserted multiple stop codons “TAATAATAATAGTGA” 12 nucleotides into the sequence; for the 8,192 and
65,536 bp context settings, we add context to both sides of the gene after the insertion. Additionally, for the
8,192 bp setting, we tested two other strategies: (1) inserting a single stop codon “TAA” 12 nucleotides into
the sequence and (2) deleting the entire gene sequence (after which we provided 8,192 context centered on
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the deleted gene) (Figure S9). As an additional control, we also used the gene’s linear position in the reference
genome as the value with which to predict essentiality. If a model were simply using positional information to
make essentiality predictions, the performance would be similar to this control.

We used the change in log-likelihoods to predict the binary gene essentiality labels and compute the
strength of the prediction with the AUROC score. We assessed the statistical significance of the AUROC with
a permutation-based method in which a null distribution is constructed by permuting the binary labels and
recomputing the subsequence AUROC.We performed 100,000 permutations to construct this null distribution.

B.10. Genome-scale generation and evaluation

We used Evo pretrained at 131k context to sample twenty sequences up to lengths ∼650 kb. We sampled
with a temperature of 0.7 and a top-𝑘 value of 0.7 following a standard autoregressive sampling procedure
(Chang and Bergen, 2023). We prompted the model with four species-specific tokens, which were introduced
during 131k pretraining, corresponding to the bacterial speciesMycoplasma genitalium, Staphylococcus aureus,
Klebsiella pneumoniae, and Escherichia coli. We sampled five sequences for each prompt, leading to a total of
twenty sequences.

We evaluated these generations with CheckM (Parks et al., 2015), a tool that computes basic genome qual-
ity metrics based on whether a given long DNA sequence has similar properties as known bacterial genomes.
CheckM uses Prodigal (Hyatt et al., 2010) to identify coding sequences and computes the coding density as
one metric of genome quality. CheckM will also search for the presence of genes that are highly conserved
across much of prokaryotic diversity. We divided all of our generations into five discrete segments of up to
131,072 bp (a total of 100 sequences) and computed the distribution of CheckM coding densities across these
crops. As a positive control, we randomly selected 100 bacterial genomes from GTDB and used CheckM to
compute the coding densities for 131,072 bp crops from these genomes. As a negative control, we generated
1,000 sequences of length 131,072 in which the four DNA base pairs were sampled uniformly at random. We
then used CheckM to compute the coding densities on this random sequence. We also used tRNAscan-SE to
search for tRNA sequences in our generated sequences and we used barrnap to search for rRNA sequences.

We used ESMFold to obtain atomic-level structure predictions for all of the Prodigal-defined coding se-
quences in each of our generations. We limited ESMFold structure predictions to coding sequences between
100 and 1024 amino acids, inclusive. We computed the mean backbone pLDDT for all predicted structures. We
used the biotite Python package to compute the percentages of secondary structure elements for all predicted
structures. We used FoldSeek easy-search to perform efficient TM-based alignment (––alignment-type 1),
and all other parameters set to their default values, to perform an all-by-all structural search between ESMFold
structures corresponding to Evo-generated sequences and the structure predictions for UniRef50 provided in
the AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/). Structure alignments were
scored as the average of the query TMscore and the target TMscore, where a score greater than 0.4 was con-
sidered a structural match. We used these structural matches, along with GO terms assigned to UniRef50
clusters, to infer GO terms for the Evo-generated proteins as well. We used PyMOL to visualize protein struc-
tures corresponding to the five GO “molecular function” terms with the most representation among the Evo
generated proteins.
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C. Supplementary tables and figures

Table S1 | Scaling laws model settings for Transformer++, Hyena, StripedHyena and Mamba. Layer number
for Mamba is doubled (a single block corresponds to two Mamba layers and the dedicated channel mixer layer
is removed, as described in (Gu and Dao, 2023)). Parameter counts vary slightly for each architecture.

Params (M) d_model glu_size kv_size n_heads n_layers learning rate
1 128 336 64 2 4 9.77E-04
6 320 848 64 5 5 9.57E-04
17 448 1200 64 7 7 9.36E-04
29 512 1360 64 8 9 9.15E-04
40 576 1536 64 8 10 8.95E-04
59 640 1696 64 10 12 8.70E-04
69 640 1712 64 10 14 8.56E-04
84 704 1872 64 11 14 8.37E-04
99 768 2048 64 12 14 8.18E-04
114 768 2048 64 12 16 8.00E-04
121 768 2048 64 12 17 7.75E-04
135 768 2048 64 12 19 7.50E-04
158 832 2224 64 13 19 7.25E-04
175 832 2224 64 13 21 7.00E-04
203 896 2384 64 14 21 6.75E-04
232 896 2384 64 14 24 6.50E-04
266 960 2560 64 15 24 6.25E-04
303 1024 2736 64 16 24 6.00E-04
383 1152 3072 64 18 24 5.66E-04
473 1280 3408 64 20 24 5.33E-04
572 1408 3760 128 11 24 5.00E-04
680 1536 4096 128 12 24 4.75E-04
798 1664 4432 128 13 24 4.55E-04
926 1792 4784 128 14 24 4.33E-04
1063 1920 5120 128 15 24 4.15E-04
1209 1920 5120 128 15 25 4.11E-04
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Figure S1 | Pretraining data. Statistics of IMG/VR and IMG/PR. (A) A pie chart depicting the composition
of viral realms in the IMG/VR subset of the pretraining dataset. (B) A pie chart depicting the composition of
host kingdoms in the IMG/VR subset of the pretraining dataset. We excluded viruses that are likely to infect
eukaryotic hosts (Methods). (C) The distribution of sequence lengths in the IMG/VR subset of the pretraining
dataset. (D) The distribution of sequence lengths in the IMG/PR subset of the pretraining dataset.
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Figure S2 | Perplexity scaling in context length. Perplexity on a subset of the OpenGenome validation set
with Evo 131k as a function of sequence length, or context length. The perplexity is computed over the last
2048 nucleotides of each sequence, with increasing lengths of the prefix and thus of the context available to the
model. We observe perplexity to continually decrease beyond the training context length at 131k, indicated
by the vertical dashed line.
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Figure S3 | Scaling rates for compute-suboptimal model sizes by architecture. We quantify the effect on
perplexity scaling caused by a suboptimal allocation of compute budget to model or dataset size (e.g., training
a smaller model for more tokens). We estimate the compute-optimal model size (Figure S5) for each compute
budget, then reduce it by a percentage (the offset). The corresponding perplexity is obtained via the IsoFLOP
curves (Figure 1F). Transformer++ perplexity scaling rapidly degrades outside the compute-optimal frontier,
in contrast to Hyena and StripedHyena.
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Table S2 | StripHyena 7B hyperparameters settings at pretraining. Hyperparameters used for pretraining
at 7B are shown by stage, where stage 2 highlights differences from stage 1.

Stage 1
sequence len. 8k
batch size 4M tokens
scheduler cosine decay
learning rate 3e-4
min. learning rate 3e-5
position emb. RoPE (Su et al., 2024)
weight decay 0.1
weight decay in hyena layers 0.0
precision mixed (BF16, FP32 on long convolution parameters)
optimizer Adam
optimizer betas 0.9, 0.95
eps 1e-8
norm RMSnorm (Zhang and Sennrich, 2019)
dropout 0.0
warmup 1% total steps
checkpoint activation True
model_width 4096
num_attn_heads 32
hyena short conv. length 3
GLU width 4/3 model_width
vocab size 512

Stage 2
sequence len. 131k
batch size 1M tokens
learning rate 1e-4
min. learning rate 1e-5
position emb. linearly interpolated RoPE
interp. factor 16

Table S3 | Summary statistics for the OpenGenome datasets. See B.2 for further details on the dataset
sources and curating process.

Dataset Name Source Subset Total Total Avg
Genomes/ Bases Length
Loci/Plasmids (M) (base)

Bacterial and GTDB 85,205 273,865 3,214,184
Archaeal Genomes
Prokaryotic Viruses IMG/VR 2,653,046 36,236 13,658
Plasmids IMG/PR 214,950 5,827 27,106
CRISPR/Cas Loci Custom Cas9 5,566 43 7,798

Database
CRISPR/Cas Loci Custom Cas12 5,069 35 6,911

Database
CRISPR/Cas Loci Custom Cas13 498 4 7,559

Database
IS200/IS605 Loci Custom IS200 Loci 219,866 239 1,085

Database
IS200/IS605 Loci Custom IS605 Loci 10,720 26 2,445

Database
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Figure S6 | Performance of Evo on mutational effect prediction for human proteins. (A) Predictive per-
formance of nucleotide and protein language models on mutational effect prediction for human proteins,
measured via Spearman correlation. Bar height indicates the mean; each dot indicates a different DMS study.
LM: language model; Nucl. Trans.: Nucleotide Transformer. Related to Figure 2B. (B) Relationship between
the Evo perplexity of the wildtype nucleotide sequence (horizontal axis) and the ability for Evo to perform
zero-shot mutational effect prediction for that protein as measured via Spearman correlation (vertical axis).
Each dot corresponds to a different protein; dots are colored as to whether they are E. coli (teal) or human
(blue) proteins. We observed a strong negative correlation (Spearman 𝑟 = −0.87) between perplexity and
zero-shot function prediction performance.
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Figure S7 | Breakdown of Cas generation diversity by prompt token. Evo can generate diverse Cas loci across
subtypes through conventional prompting as well as through cross-type prompting. Evo was prompted with
“cas9”, “cas12”, or “cas13” special tokens and each resulting set of generations was analyzed using pHMMs for
each Class 2 Cas subtype and compared against training data to observe divergence from the training dataset.
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Figure S8 | Additional analysis of generated IS200/IS605 sequences and the finetuned model. (A) Addi-
tional examples of diverse TnpA-like proteins with detected Y1 HuH domains and high mean backbone atom
pLDDT. Labels indicate the percent amino acid identity to closest protein hit found in training set or NCBI nr
and pLDDT. PDB structure 2EC2 shown for reference. (B) Examples of diverse generated TnpB proteins. PDB
structure 8BF8 shown for reference. (C) A summary of the 1,004,850 sequences generated using the model
finetuned on IS200/IS605 loci. Sequences have a detected TnpA, TnpB, or 𝜔RNA (“Any”), a TnpA coding
sequence (“TnpA”), a TnpB coding sequence (“TnpB”), or a 𝜔RNA (“𝜔RNA”). (D) A comparison of the per-
centage in each category across the training set and generated sequences for sequences with a detected TnpA
and TnpB coding sequence. Categories include sequences with a detected 𝜔RNA (“𝜔RNA”); sequences encod-
ing a TnpB protein between 300 and 600 aa in length; and sequences with a TnpA, a TnpB protein between
300 and 600 aa in length, and an 𝜔RNA. (E) The average entropy within 250 nt of the 5′ and 3′ends of IS605
coding sequences, including 50 nt of the CDS itself. The entropy was calculated at each position across IS605
sequences in the training set (𝑁 = 10,419). Sequence positions were aligned with respect to the beginning
and end of each respective CDS. (Left) All sequences with a TnpA followed by a TnpB. (Right) Sequences
where the TnpB precedes the TnpA on the forward strand. Gray ribbon indicates the standard deviation of
the entropy values.
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Figure S9 | Gene essentiality prediction under different settings. (A) Scatterplots that compare the AUROC
values between different models or different context windows. Axis labels are the same as the horizontal labels
in Figure 5C. Each dot corresponds to a different whole-genome essentiality study. Related to Figure 5C. (B)
Gene essentiality prediction performance for across 58 studies (each dot corresponds to a different study).
We performed in silico mutagenesis of each coding sequence in a genome and commuted the change in Evo
likelihood, which we used to predict gene essentiality. “Evo (8k context, multi-stop)” indicates a mutagenesis
strategy that inserts multiple stop codons at the beginning of each coding sequence. “Evo (8k context, single
stop)” indicates a mutagenesis that inserts a single stop codon at the beginning of each coding sequence. “Evo
(8k context, deletion)” indicates a mutagenesis strategy that deletes the entire sequence of the gene. “Position-
based prediction” indicates a prediction strategy (not using Evo) in which we use the position of a gene in the
reference genome annotation as the predictor variable for gene essentiality. See Methods for more details.
Related to Figure 5C.

Figure S10 | Statistics for ESMFold structure predictions of Evo-generated protein coding sequences.
Histograms representing the distribution of statistics computed on ESMFold-predicted structures. These struc-
tures correspond to coding sequences found on five Evo-generated sequences, each of length ∼650 kb. These
statistics are, from left to right: the percentage of residues in alpha helices, the percentage of residues in beta
sheets, the mean backbone pLDDT, and the TMscore to the closest UniRef50 structure in the AlphaFold Protein
Structure Database as determined by FoldSeek easy-search.
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